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ABSTRACT
Approval ballots have been celebrated for many voting scenar-

ios [16], in particular because of the low cognitive burden they put

on the voters. This however, comes at the cost of expressiveness

that can be problematic when voters have sophisticated preferences.

We consider voters who, in addition to usual approval, may wish to

express incompatibilities, dependencies, and/or substitution effects

between the alternatives. We introduce, and evaluate a new type

of ballot—bounded approval ballots—which captures these effects

while being almost as easy as regular approval ballots to cast.
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1 INTRODUCTION
Let us focus on the case study of Goodman’s Pipes and Tubes Ltd., a
company that is about to elect its expert committee. The committee

consists of four people who advise the board on business strategy

questions. The following six candidates are up for election: Anna
and Chris are two of the leading engineers in the company; Ben
from the human resources; Diana from the legal department; Elena
from the advertisement department; the external craftsman Frank;
and Gustavo who is responsible for material purchases. The three

board members Rob, Su, and Tim have the following opinions.

Rob: “I’m happy with Anna’s, Chris’, Elena’s, Frank’s, and Gus-

tavo’s work. They are reliable, work hard, and have been

around long enough, so each of them will improve the com-

mittee with their own expertise. ”

Su: “We are an engineering company. Expertise on materials,

production, and craftsmanship should be our focus, so there

should be one, or better two of Anna, Chris, Frank, and

Gustavo. Having more of them is also fine, although I don’t
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see a big advantage for that. I think there should also be

expertise from Diana in the committee. However, Diana and

Chris shouldn’t be together because they argue a lot. ”

Tim: “I am pretty sure that Chris, Gustavo, Ben, and Diana will do

a good job. However, every time I discuss something with

either Ben or Diana, the other one is angry because they

say that the legal department and the human resources must

work closely together. So if we give one of them a seat in

the committee, the other one must also get a seat, or else we

can just as well give no seat to either of the two. ”

The committee selection example above is a canonical instance

of multiwinner elections [11]. In this context, the most common

way of asking one’s opinion is to use approval ballots: the voters

indicate which of the alternatives they approve of [15]. Rob would

for instance express his preference by approving of Anna, Chris,

Elena, Frank, and Gustavo. However, Su’s and Tim’s statements

cannot be expressed as approval ballots. It is true that Su in principle

approves of Anna, Chris, Diana, Frank, and Gustavo. However, by

using an approval ballot she cannot state that two of them are

just as good as three, nor that Diana and Chris are incompatible.

Similarly, Tim cannot express in an approval ballot that either Ben

and Diana must be in the committee, or neither of them. Our goal

is to find a ballot format to account for the type of preferences

illustrated above, i.e., approvals, incompatibilities, substitutions,

and dependencies. Obviously, very expressive ballot formats (e.g.
rankings over subsets of alternatives) could be used to express those,

and even more complicated, preferences. This approach is however

not satisfactory. Indeed, we believe that more expressive ballots

should still be practical, i.e., not imposing a high cognitive burden on

the voters, and scaling reasonably well as the number of alternatives

increases. Moreover, even though some voters can be interested

in submitting complex ballots, only proposing complex ballots can

prevent some others to participate. We thus want to develop ballot

formats that still allow for simple ballots to be submitted.

Contribution. To achieve the goals described above, we introduce
bounded approval ballots. A bounded approval ballot is a collection

of bounded approval sets: sets of approved alternatives that are

enriched with three bounds: a lower bound (minimum number of

alternatives that have to be selected), a saturation point (number

of selected alternatives after which no additional satisfaction is

derived), and an upper bound (maximum number of alternatives



that should be selected). Approval ballots are still valid (with simple

reformatting) and treated exactly as in usual multiwinner approval

voting to be convenient for the voters who don’t want to take the

effort to submit a more complicated ballot. Moreover, for voters

who want to submit more sophisticated ballots (incompatibilities,

substitutions and dependencies) the cognitive burden is no higher

than setting some bounds for the ballot.

Related Work. Multiwinner voting (as a special case of voting in

combinatorial domains [8]) has become a widely studied research

area over the past years. We refer to Faliszewski et al. [11] for

an overview of multiwinner voting rules and typical applications.

Interestingly, the two most often used ballot types are approval

ballots and ordinal ballots (rankings). Most of the research in the

field focuses on the development of voting rules for such ballots

(for example to guarantee fairness [1, 7]) rather than on the design

and the study of these ballot types. Closest to what we are trying

to achieve here are conditional preferences, where the preferences

of a voter are conditioned on the status of a given variable. Several

proposals have been discussed to express those opinions, the most

famous probably being conditional approval ballots [3], conditional
preference networks [5], and lexicographic preference trees [4]. A
stream of research for combinatorial auctions focuses on modeling

complex utility functions using expressive languages [9]. Sand-

holm [18] studies bidding languages, where atomic bids are joined

with logical connectives (allowing for substitution and incompati-

bility effects), while Hoos and Boutilier [6, 13] interconnect bids and

logical formulas over the alternatives. However, all these bidding

languages are rather complicated to express, at least compared to

the very simple approval ballot format. Finally, several proposals

have been made to extend approval ballots, mainly in the context

of participatory budgeting, a generalization of multiwinner elec-

tions [2]. Jain et al. [14] partition the alternatives into categories

to model interactions among them. Fairstein et al. [10] incorporate

individual partitions of the alternatives to study substitution effects

(in a slightly different way than we do).

2 PRELIMINARIES
Amultiwinner election consists of a set of𝑚 alternatives (also called

candidates) A = {𝑎1, . . . , 𝑎𝑚}, a profile 𝔅 = (𝑩1, . . . ,𝑩𝑛) which
is a list of ballots 𝑩𝑖 of 𝑛 voters N = {1, . . . , 𝑛}, and an integer

𝑘 ∈ {1, . . . ,𝑚}. We denote by C𝑘 = {𝜋 ⊆ A | |𝜋 | = 𝑘} the set of
all 𝑘-sized committees. The outcome of an irresolute multiwinner

election is a set of winning committees {𝜋1, 𝜋2, . . .} ⊆ C𝑘 . The ballot
format is described in the next section. We will use ⊕ to denote

the concatenation operator between two lists. The subtraction of

list 𝐵 from list 𝐴 will be denoted through 𝐴 ⊖ 𝐵 (where for each

element in 𝐵 the first occurrence of the element in 𝐴 is removed).

We sometimes omit the brackets around a list of length one.

2.1 Bounded Approval Ballots
We now introduce bounded approval ballots, our generalization of

approval ballots to allow for submitting more complex preferences.

Definition 1 (Bounded Sets and Ballots). Given a set of alternatives
A, a bounded (approval) set is a tuple 𝐵 𝑗 =

〈
𝐴 𝑗 , ℓ 𝑗 , 𝑠 𝑗 , 𝑢 𝑗

〉
such that

𝐴 𝑗 ⊆ A and ℓ 𝑗 , 𝑠 𝑗 , 𝑢 𝑗 , respectively the lower bound, the saturation

point, and the upper bound, are all integers such that 1 ≤ ℓ 𝑗 ≤ 𝑠 𝑗 ≤
𝑢 𝑗 ≤ |𝐴 𝑗 |. A bounded (approval) ballot 𝑩𝑖 , for voter 𝑖 ∈ N , is a list
𝑩𝑖 = (𝐵1

𝑖
, . . . , 𝐵

𝑝

𝑖
) of bounded sets.

A bounded set indicates that from all the alternatives in 𝐴 𝑗
, at

least ℓ 𝑗 but no more than 𝑢 𝑗
have to be selected; while after 𝑠 𝑗

alternatives have been selected from 𝐴 𝑗
, the voter will not enjoy

any additional satisfaction from selecting more alternatives.
1
This

way, we achieve all of our initial modeling goals:

• Standard approval ballots can be expressed by setting ℓ 𝑗 = 1,

𝑠 𝑗 = 𝑢 𝑗 = |𝐴 𝑗 |: the more alternatives from 𝐴 𝑗
the better;

• Incompatibilities can be expressed by bounded sets with an

upper bound 𝑢 𝑗 = 1: Selecting multiple alternatives from

𝐴 𝑗
is not desired by the voter because these alternatives are

incompatible, but selecting one is desirable;

• Substitution can be expressed by bounded sets with ℓ 𝑗 = 𝑠 𝑗 =

1 and 𝑢 𝑗 = |𝐴 𝑗 |: Selecting one alternative from 𝐴 𝑗
is desired

but additional alternatives are substitutes;

• Dependencies can be expressed by bounded sets where ℓ 𝑗 =

|𝐴 𝑗 |: All alternatives from 𝐴 𝑗
rely on each other, and are

only useful for the voter if all of them are present.

We illustrate these ballots on the example from the introduction.

Example 1. Rob only wants to provide an approval ballot that can

be expressed by a simple bounded approval ballot consisting of only

one bounded set: ⟨{Anna, Chris, Elena, Frank, Gustavo}, 1, 5, 5⟩.
Su’s preference is more involved. The incompatibility between

Diana and Chris can be expressed by ⟨{Diana, Chris}, 1, 1, 1⟩. Fur-
ther, with ⟨{Anna, Chris, Frank, Gustavo}, 1, 2, 4⟩, we can express

that one—or better two—of Anna, Chris, Frank, and Gustavo should

be included but there is no further benefit for three or four. Su’s

ballot would thus consist of these two bounded sets.

Tim states that from Ben and Diana either both or none should

be included, which can be expressed as ⟨{Ben, Diana}, 2, 2, 2⟩. Fur-
thermore, both Chris and Gustavo are approved, which can be

expressed as ⟨{Chris, Gustavo}, 1, 2, 2⟩. △

Finally, we introduce one useful notation: for a ballot 𝑩 and an

alternative 𝑎 ∈ A, we denote by 𝑩 |𝑎 = {𝐵 𝑗 ∈ 𝑩 | 𝑎 ∈ 𝐴 𝑗 } the
bounded sets in 𝑩 involving 𝑎.

2.2 Scoring with Bounded Approval Ballots
We eventually want to aggregate the ballots that the voters submit-

ted in order to determine a winning committee. In the following

we provide different scoring functions which map profiles and com-

mittees to real numbers. These can then be used to define rules

by simply selecting the committee with the highest score. We will

investigate properties of the scoring functions later.

Definition 2 (Scoring Function). A scoring function score is a func-
tion taking as input a bounded approval ballot 𝑩 and a committee 𝜋 ,
and returning a real value score(𝑩, 𝜋). We extend scoring functions
to profiles s.t. for every profile 𝔅, score(𝔅, 𝜋) = ∑

𝑩∈𝔅 score(𝑩, 𝜋).
To capture the semantics of bounded sets described above, for

a committee 𝜋 and a bounded set 𝐵 𝑗 =
〈
𝐴 𝑗 , ℓ 𝑗 , 𝑠 𝑗 , 𝑢 𝑗

〉
, we want

scoring functions to behave as depicted below.

1
We assume that all alternatives in𝐴 𝑗

are approved in the sense that for each 𝑎 ∈ 𝐴 𝑗

there is a committee in which the voter would like 𝑎 to be part of.



ℓ 𝑗 𝑠 𝑗 𝑢 𝑗 |𝐴 𝑗 ∩ 𝜋 |
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The area represents that 𝜋 violates a dependency or incompatibil-

ity stated in 𝐵 𝑗
. Thus, 𝜋 should score 0. The area represents that

each element in 𝜋 is independently approved according to 𝐵 𝑗
—each

contributes to the total score. Finally, the area represents that the

elements in 𝜋 show substitution effects according to 𝐵 𝑗
—additional

items contribute no additional score.

Assuming neutrality, i.e., that all alternatives are treated the

same, we introduce a function that should be interpreted as the

average score of the alternatives appearing in 𝐵 𝑗
. When within

the lower bound and the saturation point, each alternative from

𝐴 𝑗 ∩ 𝜋 fully contributes to 𝐵 𝑗
’s score, i.e., they score 1 each. If the

saturation point is exceeded, the 𝑠 𝑗 points are equally split among

the alternatives. If the lower or the upper bound is violated, all the

alternatives score 0. The formal definition of this function 𝜑 is:

𝜑 (𝐵 𝑗 , 𝜋) =


1 if ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗

𝑠 𝑗

|𝐴 𝑗∩𝜋 | if 𝑠 𝑗 < |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗

0 otherwise.

Example 2. Consider the following bounded set from Su’s ballot:

𝐵 𝑗 = ⟨{Anna,Chris, Frank,Gustavo}, 1, 2, 4⟩. For 𝜋 = {Anna, Ben,
Chris, Diana}we have𝜑 (𝐵 𝑗 , 𝜋) = 1. That is, according to 𝐵 𝑗

each al-

ternative in 𝜋∩𝐴 𝑗
is fully approved, so in total 𝜋 has two approvals—

one for Anna and one for Chris. For 𝜋 ′ = {Anna, Ben,Chris, Frank}
the saturation bound is exceeded, so we have 𝜑 (𝐵 𝑗 , 𝜋 ′) = 2

3
. △

Scoring functions are defined for bounded approval ballots (and

profiles of them), and not for bounded sets as 𝜑 is defined. If each

ballot consists of only one bounded set, this would be straightfor-

ward. However, as soon as there are several bounded sets, we need

to aggregate the score of the individual bounded sets. Several usual

operators can be considered here: averaging, taking the minimal or

the maximal value, or simply summing up the scores. This results

in the following scoring functions, all based on 𝜑 .

scoremin (𝑩, 𝜋) =
∑︁
𝑎∈𝜋

min

(
𝜑 (𝐵 𝑗 , 𝜋) | 𝐵 𝑗 ∈ 𝑩 |𝑎

)
scoremax (𝑩, 𝜋) =

∑︁
𝑎∈𝜋

max

(
𝜑 (𝐵 𝑗 , 𝜋) | 𝐵 𝑗 ∈ 𝑩 |𝑎

)
scoreavg (𝑩, 𝜋) =

∑︁
𝑎∈𝜋

1

|𝑩 |𝑎 |
∑︁

𝐵 𝑗 ∈𝑩 |𝑎

𝜑 (𝐵 𝑗 , 𝜋)

scoretot (𝑩, 𝜋) =
∑︁
𝑎∈𝜋

∑︁
𝐵 𝑗 ∈𝑩 |𝑎

𝜑 (𝐵 𝑗 , 𝜋)

Note that the semantics we developed is respected when each ballot

consists of a single bounded set. Note further, that the functions

coincide when each alternative is part of at most one bounded set

per ballot, i.e., when |𝑩 |𝑎 | ≤ 1 for all 𝑎 ∈ A and every ballot 𝑩.
In addition to these four scoring functions, we also study another

one that is not based on 𝜑 : scoreapp . It is a natural generalization of

the approval score, as it counts the number of alternatives in 𝜋 for

which there exists at least one bounded set 𝐵 𝑗
for which the lower

bound is exceeded in 𝜋 , but not the saturation point:

scoreapp (𝑩, 𝜋) = |{𝑎 ∈ 𝜋 | ∃𝐵 𝑗 ∈ 𝑩 |𝑎 s.t. ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 }|.
Since, scoreapp completely disregards substitution effects, it will not

exactly fit the framework we detailed above. It will be shown to

provide interesting axiomatic results still.

Before moving on to the axiomatic analysis, let us briefly discuss

the computational complexity of the scoring functions. For all of

them, finding a committee with maximal score cannot be done in

polynomial-time, unless P = NP. For the 𝜑-based rules it is easy to

see that we can simulate the (approval version of the) Chamberlin–

Courant rule with them by submitting a single bounded set per

voter, where each bounded set has a saturation point of one and

an upper bound involving all approved alternatives. The observa-

tion then follows from the fact that Chamberlin–Courant winner

determination is NP-hard [19]. In the case of scoreapp , we can use

the NP-hard problem Exact Cover by 3-Sets (see Garey and John-

son [12]) to show the claim. These downsides are, unfortunately,

unavoidable when working with more expressive ballot formats.

3 ADEQUACY OF THE MODELIZATION
Following the classical method of social choice [20], we develop an

axiomatic theory to investigate the behavior of scoring functions.

3.1 Axiomatic Theory
We encode, by the means of axioms, the idea that bounded approval

ballots allow voters to express the different statements we are inter-

ested in; and that the scoring functions comply with the semantics

we are aiming for.

We first define two axioms enforcing that a violated incompati-

bility or dependency should not increase the score.

Definition 3 (Incompatibility Adequacy). A scoring function score
satisfies incompatibility adequacy if for every𝐴 ⊆ A, and all ballots
𝑩 and 𝑩′ = 𝑩 ⊕ ⟨𝐴, 1, 1, 1⟩, the following holds:

• score(𝑩, 𝜋) ≤ score(𝑩′, 𝜋) for every 𝜋 with |𝜋 ∩𝐴| = 1;
• score(𝑩, 𝜋) ≥ score(𝑩′, 𝜋) for every 𝜋 with |𝜋 ∩𝐴| ≠ 1.

Definition 4 (Dependency Adequacy). A scoring function score
satisfies dependency adequacy if for every 𝐴 ⊆ A, and all ballots 𝑩
and 𝑩′ = 𝑩 ⊕ ⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩, the following holds:

• score(𝑩, 𝜋) ≤ score(𝑩′, 𝜋) for every 𝜋 with 𝐴 ⊆ 𝜋 ;
• score(𝑩, 𝜋) ≥ score(𝑩′, 𝜋) for every 𝜋 with 𝐴 ⊈ 𝜋 .

Our next axiom concerns properly modeling substitution. Infor-

mally, if according to all bounded sets an item 𝑎★ is considered a

substitute w.r.t. 𝜋 , then adding 𝑎★ to 𝜋 should not change the score.

Definition 5 (Substitution Adequacy). A scoring function score
satisfies substitution adequacy if for every ballot 𝑩 and committee
𝜋 for which there exists an alternative 𝑎★ ∈ A \ 𝜋 such that for all
bounded sets 𝐵 𝑗 ∈ 𝑩 |𝑎★ , it is the case that 𝑠 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 − 1,
we have score(𝑩, 𝜋) = score(𝑩, 𝜋 ∪ {𝑎★}).

Next, we ensure that a scoring function treats approval ballots

correctly, i.e., that it behaves as the usual approval score for standard
approval ballots.



Definition 6 (Approval Adequacy). A scoring function score sat-
isfies approval adequacy if for every ballot 𝑩 and committee 𝜋 the
following two conditions hold:

(1) score(𝑩, 𝜋) ≤ |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 |;

(2) score(𝑩, 𝜋) = |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 | whenever ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗

for all 𝐵 𝑗 ∈ 𝑩.

The final adequacy axiom requires the scoring function to return

0 if and only if there is a good reason to do so.

Definition 7 (Zero Adequacy). A scoring function score satisfies
zero-adequacy if for every ballot 𝑩 and committee 𝜋 we have:

score(𝑩, 𝜋) = 0 iff ∀𝐵 𝑗 ∈ 𝑩, |𝐴 𝑗 ∩ 𝜋 | > 𝑢 𝑗 or |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 .

We further introduce monotonicity axioms enforcing the scoring

rules to be well-behaved in a dynamic environment.

The first one says that adding a bounded set which does not

conflict with a committee 𝜋 should not decrease the score of 𝜋 .

Definition 8 (Ballot-Size Monotonicity). Let 𝑩 be a ballot and 𝜋 a
committee. A scoring function score satisfies ballot-size monotonicity

if for every bounded set 𝐵 = ⟨𝐴, ℓ, 𝑠,𝑢⟩ such that ℓ ≤ |𝐴 ∩ 𝜋 | ≤ 𝑢, we
have score(𝑩, 𝜋) ≤ score(𝑩 ⊕ 𝐵, 𝜋).

Ballot-splitting monotonicity says that expressing an equivalent

statement with one large ballot, or several smaller ones, should

result in the same score.

Definition 9 (Ballot-Splitting Monotonicity). A scoring function
score satisfies ballot-splitting monotonicity if for every committee 𝜋
and every ballot 𝑩 for which there exists a bounded set 𝐵 𝑗★ ∈ 𝑩 such
that ℓ 𝑗

★ ≤ |𝐴 𝑗★∩𝜋 | ≤ 𝑠 𝑗
★
, then, for 𝑩′ = (𝑩⊖𝐵 𝑗★) ⊕ (⟨{𝑎}, 1, 1, 1⟩ |

𝑎 ∈ 𝐴 𝑗★ ∩ 𝜋), we must have score(𝑩, 𝜋) = score(𝑩′, 𝜋) .
Finally, score monotonicity requires the score not to decrease

when adding a suitable alternative to the committee.

Definition 10 (Score Monotonicity). A scoring function score sat-
isfies score monotonicity if for every ballot 𝑩 and committee 𝜋 for
which there exists an alternative 𝑎★ ∈ A\𝜋 such that for all bounded
sets 𝐵 𝑗 ∈ 𝑩 |𝑎★ it is the case that ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 − 1, we have
that score(𝑩, 𝜋) ≤ score(𝑩, 𝜋 ∪ {𝑎★}).

3.2 Axiomatic Behavior of Scoring Functions
Now that we have introduced a complete axiomatic theory, we

investigate the performance of the scoring functions we introduced

regarding those axioms. We start with scoreavg .

Theorem 3. The scoring function scoreavg satisfies approval, incom-
patibility, dependency, and zero adequacy, as well as ballot-splitting
monotonicity. It fails ballot-size monotonicity, score monotonicity, and
substitution adequacy.

Proof. Let 𝑩 be a ballot and 𝜋 a committee.

Approval Adequacy (✓) For every alternative 𝑎 ∈ 𝜋 , scoreavg
scores the average fulfillment of the relevant bounded sets. The

fulfillment being a number between 0 and 1, the average also is

between 0 and 1. We thus have scoreavg (𝑩, 𝜋) ≤ |
(⋃

𝐵 𝑗 ∈𝑩 𝐴
𝑗
)
∩ 𝜋 |.

Now assume that ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 for all 𝐵 𝑗 ∈ 𝑩. Then, for
all 𝐵 ∈ 𝑩, we have 𝜑 (𝐵, 𝜋) = 1. Each alternative in 𝜋 then scores 1,

meaning that scoreavg (𝑩, 𝜋) = |
(⋃

𝐵 𝑗 ∈𝑩 𝐴
𝑗
)
∩ 𝜋 |. ◦

Substitution Adequacy (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2},
and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 2, 2⟩ , ⟨{𝑎1, 𝑎3}, 1, 1, 2⟩). Note that 𝑎3 fulfills

the conditions required for 𝑎★ in the definition of substitution

adequacy (Definition 5). On the one hand, we have scoreavg (𝑩, 𝜋) =
2/2 + 1/1 = 2. On the other hand, for 𝜋 ′ = {𝑎1, 𝑎2, 𝑎3}, we have

scoreavg (𝑩, 𝜋 ′) = 1+1/2
2

+ 1/1 + 1/2
1

= 9/4 > 2. ◦
Incompatibility Adequacy (✓) Let 𝑩′ = 𝑩 ⊕ ⟨𝐴, 1, 1, 1⟩ be the
ballot with added incompatibility.

First assume |𝜋 ∩𝐴| ≠ 1. It is clear that for each 𝑎 ∈ 𝐴, |𝑩′
|𝑎 | =

1+ |𝑩 |𝑎 | > |𝑩 |𝑎 | holds, i.e., the normalization factor decreases. This

decrement together with 𝜑 (⟨𝐴, 1, 1, 1⟩ , 𝜋) = 0 results in a decreased

score contribution of 𝑎 and thus scoreavg (𝑩, 𝜋) > score(𝑩′, 𝜋).
Now assume that 𝜋 ∩𝐴 = {𝑎} for some 𝑎 ∈ A. We distinguish

three cases. (1) If 𝑩 |𝑎 = ∅, then score(𝑩′, 𝜋) = scoreavg (𝑩, 𝜋) + 1 >

scoreavg (𝑩, 𝜋). (2) If 𝑩 |𝑎 ≠ ∅ and for all 𝐵 𝑗 ∈ 𝑩 |𝑎 , ℓ
𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤

𝑠 𝑗 holds. Then clearly scoreavg (𝑩, 𝜋) = score(𝑩′, 𝜋). (3) Finally,
assume 𝑩 |𝑎 ≠ ∅ but for some 𝐵 𝑗 ∈ 𝑩 |𝑎 either |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗

or 𝑠 𝑗 < |𝐴 𝑗 ∩ 𝜋 |. Let 𝛼 =
∑
𝐵 𝑗 ∈𝑩 |𝑎 𝜑 (𝐵

𝑗 , 𝜋) and 𝛽 = |𝑩 |𝑎 |. By
assumption, 𝛼 < 𝛽 holds. Note that 𝛼/𝛽 is the contribution of 𝑎 to

the score of ballot 𝑩. Moreover, 𝛼+1/𝛽+1 is the contribution of 𝑎 to

the score of 𝑩′
. Since for any 0 ≤ 𝛼 < 𝛽 we have 𝛼/𝛽 < 𝛼+1/𝛽+1, we

immediately obtain scoreavg (𝑩, 𝜋) < score(𝑩′, 𝜋). ◦
Dependency Adequacy (✓) Let 𝑩′ = 𝑩 ⊕ ⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩ be the
ballot with added dependency.

First, assume 𝐴 ⊈ 𝜋 . Trivially, if 𝐴 is disjoint with the other

bounded sets, then scoreavg (𝑩, 𝜋) = score(𝑩′, 𝜋). Otherwise, note
that for each 𝑎 ∈ 𝐴 that also occurs in another bounded set, we have

|𝑩′
|𝑎 | = 1 + |𝑩 |𝑎 | > |𝑩 |𝑎 |. The normalization factor thus decreases,

and since 𝜑 (⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩ , 𝜋) = 0, the contribution of 𝑎 to the

score also decreases. Overall, scoreavg (𝑩, 𝜋) > score(𝑩′, 𝜋) holds.
Now assume 𝐴 ⊆ 𝜋 . For each element 𝑎 ∈ 𝐴 we distinguish

three cases. (1) If 𝑩 |𝑎 = ∅, then clearly 𝑎 increases the total score

by 1. (2) If 𝑩 |𝑎 ≠ ∅ and for all 𝐵 𝑗 ∈ 𝑩 |𝑎 , ℓ
𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗

holds, then 𝑎 contributed 1 to the total score in 𝑩 and also in 𝑩′
so

nothing changes. (3) Finally, assume 𝑩 |𝑎 ≠ ∅ but for some 𝐵 𝑗 ∈ 𝑩 |𝑎
either |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 or 𝑠 𝑗 < |𝐴 𝑗 ∩ 𝜋 |. Let 𝛼 =

∑
𝐵 𝑗 ∈𝑩 |𝑎 𝜑 (𝐵

𝑗 , 𝜋)
and 𝛽 = |𝑩 |𝑎 |. By assumption, 𝛼 < 𝛽 holds. Note that 𝛼/𝛽 is the

contribution of 𝑎 to the score of ballot 𝑩. Moreover, 𝛼+1/𝛽+1 is the
contribution of 𝑎 to the score of 𝑩′

. Since for any 0 ≤ 𝛼 < 𝛽 we

have 𝛼/𝛽 < 𝛼+1/𝛽+1, we have scoreavg (𝑩, 𝜋) < score(𝑩′, 𝜋). ◦
Zero Adequacy (✓) Note that we always have scoreavg (𝑩, 𝜋) ≥ 0.

Moreover, scoreavg (𝑩, 𝜋) = 0 iff 𝜑 (𝐵 𝑗 , 𝜋) = 0 for all 𝐵 𝑗 ∈ 𝑩, which

holds iff for all 𝐵 𝑗 ∈ 𝑩, either |𝐴 𝑗 ∩ 𝜋 | > 𝑢 𝑗
or |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 . ◦

Ballot-Size Monotonicity (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2},
and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 2, 2⟩). Observe that we have scoreavg (𝑩, 𝜋) =
1/1 + 1/1 = 2. Now, let 𝑩′ = 𝑩 ⊕ ⟨{𝑎1, 𝑎2, 𝑎3}, 1, 1, 3⟩. We would

then get scoreavg (𝑩′, 𝜋) = 1+1/2
2

+ 1+1/2
2

= 3/2 < 2. This shows that

ballot-size monotonicity is not satisfied. ◦
Ballot-Splitting Monotonicity (✓) Assume 𝐵 𝑗★ ∈ 𝑩 is a set with

ℓ 𝑗
★ ≤ |𝐴 𝑗★ ∩ 𝜋 | ≤ 𝑠 𝑗

★
. Let 𝑩′ = (𝑩 ⊖ 𝐵 𝑗★) ⊕ (⟨{𝑎}, 1, 1, 1⟩ | 𝑎 ∈

𝐴 𝑗★∩𝜋). Note that |𝑩 |𝑎 | = |𝑩′
|𝑎 | for all 𝑎 ∈ 𝜋 . So overall splitting the



ballot has no effect on the normalization factor. Now, it is clear from

the assumption that 𝜑 (𝐵 𝑗★, 𝜋) = 1. In 𝑩′
, for each of the newly

created bounded set 𝐵′𝑗★
𝑖 , we have 𝜑 (𝐵′𝑗★

𝑖 , 𝜋) = 1, too. Overall,

nothing changes and scoreavg satisfies splitting monotonicity. ◦
Score Monotonicity (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎2, 𝑎3}, and
𝑩 = (⟨{𝑎1, 𝑎2}, 1, 1, 2⟩ , ⟨{𝑎1, 𝑎3}, 1, 1, 2⟩). Note that 𝑎1 fulfills the

conditions required for 𝑎★ in the definition of score monotonicity

(Definition 10). We have scoreavg (𝑩, 𝜋) = 1/1 + 1/1 = 2. However,

scoreavg (𝑩, 𝜋 ∪ {𝑎1}) =
1/2+1/2

2
+ 1/2 + 1/2 < 2. This shows that score

monotonicity is not satisfied. □

Interestingly, the scoreavg scoring function fails substitution ade-

quacy. As we shall see, this is due to its normalization factor. Indeed,

scoretot will not suffer this drawback, but suffers some others.

Theorem 4. The scoring function scoretot satisfies substitution, in-
compatibility, dependency, and zero adequacy, as well as ballot-size
monotonicity, score monotonicity, and ballot-splitting monotonicity,
but it fails approval adequacy.

Proof. Let 𝑩 be a ballot and 𝜋 a committee.

Approval Adequacy (✗) Let A = {𝑎1, 𝑎2}, 𝜋 = {𝑎1}, and 𝑩 =

(⟨{𝑎1}, 1, 1, 1⟩ , ⟨{𝑎1, 𝑎2}, 1, 2, 2⟩). We have scoretot (𝑩, 𝜋) = 2 which

is a clear violation of approval adequacy. ◦
Substitution Adequacy (✓) Consider a bounded approval ballot

𝑩, a committee 𝜋 and an alternative 𝑎★ ∈ A \ 𝜋 as in the definition

of substitution adequacy (Definition 5). Let 𝐵 = ⟨𝐴, ℓ, 𝑠,𝑢⟩ be an
arbitrary bounded set from 𝑩 such that 𝑎★ ∈ 𝐴. By the definition

of 𝑎★, we know that 𝑠 ≤ |𝐴 ∩ 𝜋 | ≤ 𝑢 − 1. Hence, the contribution

of 𝐵 to scoretot (𝑩, 𝜋) is 𝑠 𝑗 . Now, for 𝜋 ′ = 𝜋 ∪ {𝑎★} we have 𝑠 + 1 ≤
|𝐴 ∩ 𝜋 ′ | ≤ 𝑢. Hence, the contribution of 𝐵 to scoretot (𝑩, 𝜋 ′) is
also 𝑠 𝑗 . This applies to any bounded set including 𝑎★. Since the

contributions of sets which don’t include 𝑎★ are also unchanged,

we have scoretot (𝑩, 𝜋) = scoretot (𝑩, 𝜋 ′). ◦
Incompatibility Adequacy (✓) Note that by adding a bounded

set to a ballot the score cannot decrease. Further, if for the added

ballot 𝐵 𝑗
, it holds that𝑢 𝑗 < |𝜋∩𝐴 𝑗 |, the score does not increase. ◦

Dependency Adequacy (✓) Note that by adding a bounded set

to a ballot the score cannot decrease. Further, if for the added ballot

𝐵 𝑗
holds ℓ 𝑗 > |𝜋 ∩𝐴 𝑗 |, the score also does not increase. ◦

Zero Adequacy (✓) Note that we always have scoretot (𝑩, 𝜋) ≥ 0.

Moreover, scoretot (𝑩, 𝜋) = 0 iff 𝜑 (𝐵 𝑗 , 𝜋) = 0 for all 𝐵 𝑗 ∈ 𝑩, which
holds iff for all 𝐵 𝑗 ∈ 𝑩, either |𝐴 𝑗 ∩ 𝜋 | > 𝑢 𝑗

or |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 . ◦
Ballot-Size Monotonicity (✓) Note that by adding a bounded

set 𝐵 𝑗
to a ballot the score cannot decrease. If for a committee 𝜋

holds ℓ 𝑗 ≤ |𝐴 𝑗 ∩𝜋 | ≤ 𝑢 𝑗
, the score will even strictly increase. Thus,

scoretot satisfies ballot-size monotonicity. ◦
Ballot-Splitting Monotonicity (✓) Note that replacing 𝐵 𝑗

with

ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 by the bounded sets (⟨{𝑎}, 1, 1, 1⟩ | 𝑎 ∈ 𝐴 𝑗 ∩ 𝜋)
means replacing a bounded set which contributes |𝐴 𝑗 ∩ 𝜋 | to the

total score by |𝐴 𝑗 ∩ 𝜋 | many bounded sets which contribute 1 to

the total score (w.r.t. 𝜋 ). This means no change for the score, i.e.,
ballot-splitting monotonicity is satisfied. ◦
Score Monotonicity (✓) Let 𝑎★ be the alternative described in

the definition. For bounded sets 𝐵 𝑗
with ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 − 1 it

is immediate that the score contributions of alternatives in 𝐴 𝑗 ∩ 𝜋

are the same in scoretot (𝑩, 𝜋) and scoretot (𝑩, 𝜋 ∪ {𝑎★}), and 𝑎★’s

contribution counts on top. In bounded sets 𝐵 𝑗
with 𝑠 𝑗 ≤ |𝐴 𝑗 ∩𝜋 | ≤

𝑢 𝑗 − 1 (i.e., where 𝑎★ is a substitute) we know that the contribu-

tion of 𝐵 𝑗
to scoretot (𝑩, 𝜋) is 𝑠 𝑗 . This contribution is unchanged in

scoretot (𝑩, 𝜋 ∪ {𝑎★}). Thus, we can conclude that scoretot (𝑩, 𝜋) ≤
scoretot (𝑩, 𝜋 ∪ {𝑎★}). □

It turns out that also the other𝜑-based scoring functions scoremin
and scoremax are not perfect from an axiomatic point as detailed in

Table 1. The formal proofs are omitted due to space constraints.

Theorem 5. The scoring function scoremin satisfies approval, incom-
patibility, dependency, and zero adequacy, as well as ballot-splitting
monotonicity, but it fails substitution adequacy, ballot-size mono-
tonicity, and score monotonicity.

Theorem 6. The scoring function scoremax satisfies substitution,
incompatibility, dependency, and zero adequacy, as well as ballot-size
monotonicity, score monotonicity, and ballot-splitting monotonicity,
but it fails approval adequacy.

Let us finally consider scoreapp . It fails several axioms, including

substitution adequacy, as it completely ignores substitution effects.

Theorem 7. The scoring function scoreapp satisfies approval, in-
compatibility, and dependency adequacy, as well as ballot-size and
ballot-splitting monotonicity. It fails substitution and zero adequacy,
and score monotonicity.

Proof. Approval adequacy follows directly from the definition

of scoreapp . For ballot-sizemonotonicity, note that adding a bounded

set never decreases the score. To prove the satisfaction of the other

axioms, consider arbitrary ballot 𝑩 and committee 𝜋 .

Incompatibility Adequacy (✓) When we add bounded set 𝐵 𝑗 =

⟨𝐴, 1, 1, 1⟩ to 𝑩, the score cannot decrease as already stated above.

However, it can increase only if there is some 𝑎 ∈ 𝜋 with 𝑎 ∈ 𝐴 𝑗

and 1 = ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 = 1, i.e., if |𝐴 ∩ 𝜋 | = 1. If |𝐴 ∩ 𝜋 | ≠ 1 it

cannot increase. ◦
Dependency Adequacy (✓) When we add a bounded set indicat-

ing dependency 𝐵 𝑗 = ⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩ to 𝑩, the score again cannot

decrease. However, it can increase only if there is some 𝑎 ∈ 𝜋 with

𝑎 ∈ 𝐴 𝑗
and |𝐴| = ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 = |𝐴|, i.e., if 𝐴 ⊆ 𝜋 . If 𝐴 ⊈ 𝜋

it cannot increase. ◦
Ballot-Splitting Monotonicity (✓) Let 𝐵 𝑗 ∈ 𝑩 be a suitable set

according to the definition of ballot-splitting monotonicity. Note

that since ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 , each 𝑎 ∈ 𝐴 𝑗 ∩ 𝜋 contributes 1 to the

score. By adding ⟨{𝑎}, 1, 1, 1⟩ to the ballot, each 𝑎 still contributes 1

to the score. However, for each𝑏 ∈ 𝜋\𝐴 there is no new bounded set

concerning 𝑏, so they score just as before, too. All other alternatives

in A score 0 just as before. Thus, the score is unchanged. ◦
Now we turn to the counterexample showing that substitution

adequacy, zero adequacy, and score monotonicity are failed. Con-

sider A = {𝑎1, 𝑎2, 𝑎3} and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 1, 2⟩). Let 𝜋 = {𝑎1}.
Note that 𝑎2 is a suitable substitute. Let 𝜋 ′ = 𝜋 ∪ {𝑎2}. Since
scoreapp (𝑩, 𝜋) = 1 > scoreapp (𝑩, 𝜋 ′) = 0, substitution is failed. We

also see that a score of 0 is possible even though all upper and lower

bound are respected for the committee 𝜋 ′
. Thus, zero adequacy is

failed. Finally, since adding 𝑎2 to 𝜋 decreased the score though the

bounds are respected, score monotonicity is also failed. □



3.3 Impossibility and Possibility Results
The fact that scoreavg , scoremin, scoremax , and scoreapp fail substitu-

tion but satisfy approval adequacy, and that scoretot satisfies sub-
stitution but fails approval adequacy, is actually a hint at a bigger

result: it is impossible to satisfy both approval adequacy and sub-

stitution adequacy at the same time.

Theorem 8. No scoring function satisfies approval adequacy and
substitution adequacy simultaneously.

Proof. Let score be a scoring function that satisfies approval

adequacy and substitution. Throughout the proof, we will consider

an instance with three alternatives: A = {𝑎1, 𝑎2, 𝑎3}. Let us first
look at the following profile𝔅 composed of the single voter’s ballot:

𝑩 = (⟨{𝑎1, 𝑎3}, 1, 1, 2⟩ , ⟨{𝑎2, 𝑎3}, 1, 1, 2⟩) .
For 𝜋1 = {𝑎3} approval adequacy implies score(𝑩, 𝜋1) = 1. Note that

𝑎1 is a suitable substitute for 𝜋1 as defined in Definition 5. Thus, for

𝜋 ′
1
= {𝑎1, 𝑎3} must hold score(𝔅, 𝜋 ′

1
) = score(𝔅, 𝜋1) = 1 in order

for score to satisfy substitution. Interestingly, alternative 𝑎2 is a

suitable substitute for 𝜋 ′
1
. Thus, for 𝜋 ′′

1
= {𝑎1, 𝑎2, 𝑎3} substitution

entails that score(𝔅, 𝜋 ′′
1
) = score(𝔅, 𝜋 ′

1
) = 1. Consider now the

committee 𝜋2 = {𝑎1, 𝑎2}. Approval adequacy on 𝑩 and 𝜋2 implies

score(𝑩, 𝜋2) = 2. Alternative 𝑎3 is a suitable substitute here, thus,

for 𝜋 ′
2
= {𝑎1, 𝑎2, 𝑎3} we have score(𝔅, 𝜋 ′

2
) = score(𝔅, 𝜋2) = 2. Since

𝜋 ′
2
= 𝜋 ′′

1
, the contradiction between is immediate. □

This impossibility is quite stringent as it prevents us from model-

ing what we had in mind in the first place. One way to circumvent

it is to restrict the ballots. For instance, whenever bounded sets

are not overlapping, i.e., no alternative appears in more than one

bounded set per ballot, then all 𝜑-based scoring functions coincide

and thus satisfy both substitution and approval adequacy (and also

any axiom that is satisfied by at least one of them).

Theorem 9. For every ballot 𝑩 such that for any two bounded sets
𝐵 𝑗 and 𝐵 𝑗 ′ in 𝑩, we have 𝐴 𝑗 ∩𝐴 𝑗 ′ = ∅, scoremin, scoremax , scoreavg ,
and scoretot coincide and thus all satisfy approval, substitution, in-
compatibility, dependency, and zero adequacy, as well as ballot-size,
ballot-splitting, and score monotonicity.

Another approach to “escape” the impossibility would be to

weaken the axioms.We first investigate weak-substitution adequacy

that requires the score not to improve when adding a substitute to

the committee—instead of simply scoring the same.

Definition 11 (Weak-Substitution Adequacy). A scoring function
score satisfies weak-substitution adequacy if for every ballot 𝑩 and
committee 𝜋 for which there exists an alternative 𝑎★ ∈ A\𝜋 such that
for all bounded sets𝐵 𝑗 ∈ 𝑩 |𝑎★ , it is the case that 𝑠 𝑗 ≤ |𝐴 𝑗∩𝜋 | ≤ 𝑢 𝑗−1,
we have score(𝑩, 𝜋) ≥ score(𝑩, 𝜋 ∪ {𝑎★}) .
It is clear that substitution adequacy implies weak substitution

adequacy. Furthermore, it is easy to see that weak-substitution

adequacy together with score monotonicity implies substitution

adequacy. We can conclude that no scoring function can satisfy

score monotonicity, weak-substitution, and approval adequacy at

the same time. Finally, note that the counterexamples used to show

that scoreavg , scoremin, and scoremax fail substitution adequacy also

show that these scoring functions fail weak-substitution adequacy.

We can however prove that scoreapp satisfies it.

Table 1: Summary of our axiomatic analysis. Suits show the
impossibility that all axioms with same suit are combined.

scorex min max avg tot app

App. Adeq. ♣ ♠ ✓ ✓ ✓ ✗ ✓

Subst. Adeq. ♣ ✗ ✗ ✗ ✓ ✗

Incomp. Adeq. ✓ ✓ ✓ ✓ ✓

Dep. Adeq. ✓ ✓ ✓ ✓ ✓

Zero Adeq. ✗ ✓ ✓ ✓ ✗

Weak-Subst. Adeq. ♠ ✗ ✗ ✗ ✓ ✓

Weak-App. Adeq. ✓ ✓ ✓ ✗ ✓

Ballot-Size Mon. ✗ ✓ ✗ ✓ ✓

Ballot-Split. Mon. ✓ ✓ ✓ ✓ ✓

Score Mon. ♠ ✗ ✗ ✗ ✓ ✗

Proposition 10. The scoring function scoreapp satisfies weak-sub-
stitution adequacy.

Proof. Consider a substitute 𝑎★ ∈ A\𝜋 with 𝑠 𝑗 ≤ |𝐴 𝑗 ∩𝜋 | < 𝑢 𝑗

for all 𝐵 𝑗 ∈ 𝑩 |𝑎★ . If 𝑎
★
is added to 𝜋 , it holds that |𝐴 𝑗 ∩(𝜋∪{𝑎★}) | =

|𝐴 𝑗 ∩ 𝜋 | + 1 for all 𝐵 𝑗 ∈ 𝑩 |𝑎★ and |𝐴 𝑗 ∩ (𝜋 ∪ {𝑎★}) | = |𝐴 𝑗 ∩ 𝜋 | for
all other 𝐵 𝑗

. Together with the fact that 𝑎★ is a substitute follow

the following two facts. (1) If for an alternative 𝑎 ∈ 𝜋 exists no

set 𝐵 𝑗 ∈ 𝑩 |𝑎 s.t. ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 there is also no set 𝐵 𝑗 ∈ 𝑩 |𝑎
s.t. ℓ 𝑗 ≤ |𝐴 𝑗 ∩ (𝜋 ∪ {𝑎★}) | ≤ 𝑠 𝑗 . (2) There is no set 𝐵 𝑗 ∈ 𝑩 |𝑎★ s.t.

ℓ 𝑗 ≤ |𝐴 𝑗 ∩ (𝜋 ∪ {𝑎★}) | ≤ 𝑠 𝑗 . Thus, the score does not increase. □

We now consider weakening approval adequacy. The impos-

sibility result is largely based on the fact that bounded sets are

overlapping. One could thus weaken approval adequacy to require

scoring functions to coincide with the usual approval score only

when bounded sets are not overlapping.

Definition 12 (Weak-Approval Adequacy). A scoring function score
satisfies weak-approval adequacy if for every ballot 𝑩 and committee
𝜋 the following two conditions hold:

(1) score(𝑩, 𝜋) ≤ |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 |;

(2) score(𝑩, 𝜋) = |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 | whenever it holds that both

ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 and 𝐴 𝑗 ∩𝐴 𝑗 ′ = ∅ for all 𝐵 𝑗 , 𝐵 𝑗 ′ ∈ 𝑩.

Note that approval adequacy implies weak-approval adequacy.

Can we find a scoring function satisfying both weak-approval

and substitution adequacy at the same time? Yes, we could use

the following scoring function, that essentially forbids overlapping

ballots:

score(𝑩, 𝜋) =
{
scoretot (𝑩, 𝜋) if 𝐴 𝑗 ∩𝐴 𝑗 ′ = ∅ ∀𝐵 𝑗 , 𝐵 𝑗 ′ ∈ 𝑩

0 otherwise.

It is clear that this function satisfies substitution adequacy since

scoretot does (for the first case), and any constant scoring function

does as well (for the second case). Weak-approval adequacy is also

trivially satisfied. Indeed, the above scoring function scores non-0

only for profiles satisfying the second condition of weak-approval



adequacy. This scoring function is quite artificial but proves pos-

sibility. We did not find an intuitively appealing scoring function

that would satisfy both weak-approval and substitution adequacy.

4 EXPRESSIVENESS OF BOUNDED APPROVAL
BALLOTS

We nowwant to study how expressive bounded approval ballots are.

Because the way they are defined, we cannot discuss expressiveness

of bounded approval ballots on their own, but need to consider them

together with some scoring function.

In the following, we first study which kind of weak ordinal

rankings over subsets of alternatives a bounded approval ballot—

paired with a scoring function—can induce. Then, we show that the

additional expressiveness can be crucial for the voters’ satisfaction,

when compared to standard approval ballots.

4.1 Limits to Expressiveness
For a given scoring function score, we study the limits of what a

bounded approval ballot 𝑩 can express. We work under the assump-

tion that voters have ordinal preferences over committees and we

measure expressiveness through the type of rankings over commit-

tees that can be induced by the scoring function, when ranking all

committees based on their score for the ballot 𝑩. Formally, every

voter 𝑖 ∈ N is equipped with a weak ranking over committees in

C𝑘 denoted by ⪰𝑖 . We represent a weak ranking ⪰ over C𝑘 as an

ordered partition ⪰= (𝐶1

⪰,𝐶
2

⪰, . . .) of C𝑘 where 𝐶1

⪰ contains the

most preferred committees, and so on. The rank of a committee 𝜋

in ⪰—denoted by rank⪰ (𝜋)—is the value 𝑗 ∈ N such that 𝜋 ∈ 𝐶
𝑗
⪰ .

For a given scoring function score and bounded approval ballot 𝑩,
let ⪰score

𝑩 be the weak order over C𝑘 such that for all 𝜋, 𝜋 ′ ∈ C𝑘 ,
𝜋 ⪰score

𝑩 𝜋 ′
if and only if score(𝑩, 𝜋) ≥ score(𝑩, 𝜋 ′). A scoring

function can represent such a ranking ⪰ over C𝑘 if there exists a

bounded approval ballot 𝑩 such that ⪰score
𝑩 and ⪰ coincide. Every-

thing is now set for us to delve into expressiveness. Our findings

are summarized in Table 2. We start with arbitrary orders over C𝑘 .

Proposition 11. The scoring functions scoreavg and scoretot can
represent any arbitrary weak order ⪰ over C𝑘 for any 𝑘 ≥ 2, while
scoremin, scoremax , and scoreapp cannot.

Proof. Let ⪰ be an arbitrary ranking over C𝑘 . To show that

scoretot can represent ⪰we construct a ballot𝑩 as follows. For every

𝜋 ∈ C𝑘 , we add to 𝑩 as many copies of ⟨𝜋, 𝑘, 𝑘, 𝑘⟩ as
(𝑚
𝑘

)
−rank⪰ (𝜋).

Since for 𝜋, 𝜋 ′ ∈ C𝑘 , it holds that scoretot (⟨𝜋, 𝑘, 𝑘, 𝑘⟩ , 𝜋 ′) is 𝑘 if

𝜋 = 𝜋 ′
and zero if 𝜋 ≠ 𝜋 ′

, the result then follows.

For scoreavg , we extend the ballot described above, to bypass

normalization, by enforcing that each alternative appears in an

equal number of bounded sets. In particular, for all 𝜋 ∈ C𝑘 , we
add sufficiently many copies of ⟨𝜋, 𝑘 − 1, 𝑘 − 1, 𝑘 − 1⟩ to 𝑩, such
that every 𝜋 ∈ C𝑘 appears in exactly

(𝑚
𝑘

)
bounded sets in 𝑩. This

ensures that each alternative appears in exactly 𝛾 =
( 𝑚
𝑘−1

)
·
(𝑚
𝑘

)
bounded sets. We thus have 𝛾 · scoreavg (𝑩, 𝜋) = scoretot (𝑩, 𝜋) for
all 𝜋 ∈ C𝑘 . The claim is thus derived from the above.

The claim for scoremax and scoreapp follows from Proposition 12

(see below). For scoremin, we can use a counting argument. Assume

⪰ is a strict ranking over C𝑘 , i.e., we have |⪰| =
(𝑚
𝑘

)
. We claim

that for any fixed ballot 𝑩, scoremin (𝑩, 𝜋) can take at most

(𝑘2+𝑘+1
𝑘

)

Table 2: Expressiveness of the scoring functions.

scorex min max avg tot app

Arbitrary ✗ ✗ ✓ ✓ ✗

Trichotomous ✓ ✗ ✓ ✓ ✗

Dichotomous ✓ ✓ ✓ ✓ ✓

different values for different 𝜋 ∈ C𝑘 . This is because for a given
bounded set 𝐵 = ⟨𝐴, ℓ, 𝑠,𝑢⟩, the size of the image of 𝜑 (𝐵, 𝜋), where
𝜋 is the input, is at most 𝑘2 + 2. Indeed, 𝜑 (𝐵, 𝜋) can be either 0, 1

or 𝑠
𝑗/|𝐴 𝑗∩𝜋 | and that there are 𝑘2 possible values for the latter (as

if 𝑠 𝑗 > 𝑘 , then 𝜑 (𝐵, 𝜋) ∈ {0, 1}). For all 𝑘 alternatives in 𝜋 , scoremin
takes the minimum of the relevant 𝜑 (𝐵, 𝜋) and then sum them up.

The final score is then the sum of 𝑘 (not necessarily distinct) values

from a set of 𝑘2 + 2 ones. Hence, the number of possible values for

scoremin (and any 𝜋 ∈ C𝑘 ) is bounded upwards by the number of

multisets with cardinality 𝑘 , taken from a set of size 𝑘2+2. The latter
is well known to be

(𝑘2+𝑘+1
𝑘

)
, which is smaller than |⪰| =

(𝑚
𝑘

)
as

soon as𝑚 > 𝑘2 + 𝑘 + 1. This concludes the counting argument. □

To understand where the limit in expressiveness lies for scoremin,

scoremax , and scoreapp we focus on specific classes of orders over C𝑘 .
A weak order ⪰ is said to be dichotomous if |⪰| = 2, and trichotomous
if |⪰| = 3. We show that scoremin can capture the former, while

scoremax and scoreapp can only capture the latter.

Proposition 12. The scoring function scoremin can represent any
trichotomous weak order ⪰ over C𝑘 for any 𝑘 ≥ 2, while scoremax
and scoreapp cannot.

Proof. To represent a trichotomous order ⪰= (𝐶1

⪰,𝐶
2

⪰,𝐶
3

⪰) over
C𝑘 with scoremin, we construct a ballot 𝑩 as follows. First, we add

⟨{𝑎}, 1, 1, 1⟩ for each 𝑎 ∈ A to 𝑩. For now, any committee 𝜋 ∈ C𝑘
would have a score of 𝑘 . We diminish the score of all committees

𝜋 ∈ 𝐶2

⪰ by adding ⟨𝜋, 1, 𝑘 − 1, 𝑘⟩ to𝑩. Note that this does not impact

the score of any committee 𝜋 ∈ 𝐶1

⪰ . For any 𝜋 ∈ C𝑘 , it now holds

that each 𝑎 ∈ 𝜋 receives a score of one if and only if there is no

⟨𝜋, 1, 𝑘 − 1, 𝑘⟩ ∈ 𝑩, and 𝑘−1/𝑘 otherwise. Finally, for any 𝜋 ∈ 𝐶3

⪰ ,
we add ⟨𝜋, 1, 𝑘 − 1, 𝑘 − 1⟩ to 𝑩, so that all these committees score 0.

We thus have three levels of score: 𝑘 for committees in 𝐶1

⪰ , 𝑘−1/𝑘
for committees in 𝐶2

⪰ and 0 for committees in 𝐶3

⪰ .
2

For scoremax , consider A = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑘 = 2 and the order ⪰
such that 𝐶1

⪰ = {{𝑎, 𝑏}, {𝑐, 𝑑}}, 𝐶2

⪰ = {{𝑎, 𝑑}, {𝑏, 𝑐}} and 𝐶3

⪰ =

{{𝑎, 𝑐}, {𝑏, 𝑑}}. Consider an arbitrary ballot 𝑩. It is important to

note that in this case, the score of a committee would always be

a multiple of 1/2 (because 𝜑 (𝐵, 𝜋) ∈ {0, 1/2, 1} for all 𝐵 and 𝜋 ). If

scoremax (𝑩, {𝑎, 𝑐}) = scoremax (𝑩, {𝑏, 𝑑}) = 0, then 𝑩 may not con-

tain a bounded set with a lower bound of 1. Hence, the remaining

committees can all either receive a score of 0 or 2, which cannot lead

to a trichotomous order. Next, it is easy to see, that no committee

{𝑥,𝑦} ∈ C𝑘 can achieve a score of 1/2. The only way 𝑥 can receive

a score of 1/2, is with ⟨{𝑥,𝑦}, 1, 1, 2⟩ and then 𝑦 necessarily yields

a score of at least 1/2, too. Hence, in order to achieve said order-

ing, it must hold that scoremax (𝑩, {𝑎, 𝑐}) = scoremax (𝑩, {𝑏, 𝑑}) = 1

and scoremax (𝑩, {𝑎, 𝑑}) = scoremax (𝑩, {𝑏, 𝑐}) = 3/2. For the latter to
2
Note that this would not work for 𝑘 = 1 as in this case, scoremin (𝑩, 𝜋 ) can only take

two values—0 or 1—for any 𝑩 and 𝜋 .



hold (i.e., an alternative to yield a score of 1/2), both ⟨{𝑎, 𝑑}, 1, 1, 2⟩
and ⟨{𝑏, 𝑐}, 1, 1, 2⟩ must be added to the ballot. This is a contradic-

tion, because then {𝑎, 𝑐} yields a score of two.
For scoreapp the situation is similar to scoremax . To see that we

are not able to represent trichotomous preferences, we can use

the same counterexample, where only the first case applies. In

particular, for trichotomous rankings and 𝑘 = 2 we can always

assume that the score for the least preferred committees must be

zero, as scoreapp (𝑩, {𝑥,𝑦}) ∈ {0, 1, 2} holds by design. □

Proposition 13. The scoring functions scoremax and scoreapp can
represent any dichotomous weak order ⪰ over C𝑘 .

Proof. To represent any dichotomous order ⪰ with scoremax or

scoreapp , we may add the bounded set ⟨𝜋, 𝑘, 𝑘, 𝑘⟩ ∈ 𝑩 to the ballot,

for each committee 𝜋 ∈ 𝐶1

⪰ . For both scoring functions, the score

for a committee 𝜋 would then be 𝑘 if 𝜋 ∈ 𝐶1

⪰ or 0 otherwise. □

4.2 Comparison to Approval Ballots
Bounded approval ballots are our proposal to provide voters more

expressive ballots. It is clear that simple approval ballots cannot

express more than bounded approval ballots, since the latter gener-

alizes the former. But are approval ballots really so much weaker

than bounded approval ballots? In the following we illustrate that

approval ballots—even strategic ones—can lead to much worse re-

sults for the voters than bounded approval ballots.

Bounded approval ballots also impose a restriction on the pref-

erences that can be expressed. This is why classical measures like

distortion [17] cannot be used here to compare bounded and stan-

dard approval ballots. We will instead show with the following

examples that (i) standard approval ballots are not sufficiently ex-

pressive, compared to bounded ones, especially in cases where

communication between the voters is impossible, and (ii) the loss
of expressiveness can largely impact on the voters’ satisfaction.

Example 14. (Pure Substitution) Assume that for every voter 𝑖 , their

preferences are defined such that there exists a set of alternatives

𝐴𝑖 ⊆ A for which 𝑖 is unsatisfied whenever 𝜋 ∩ 𝐴𝑖 = ∅ and fully

satisfied as soon as 𝜋 ∩𝐴𝑖 ≠ ∅. Note that 𝑖’s preferences can easily

be expressed by a single bounded set ⟨𝐴𝑖 , 1, 1, |𝐴𝑖 |⟩. Now, if voter 𝑖
were asked to submit a standard approval ballot, the only reasonable

ballot to submit would be 𝐴𝑖 .

Let the number of voters 𝑛 be such that 𝑛 is divisible by 𝑘 , and

let A = {𝑎1, . . . , 𝑎𝑘2 }. Consider the profile 𝔅 of bounded approval

ballots in which 𝑛/𝑘 voters submit ⟨{𝑎1, . . . , 𝑎𝑘 }, 1, 1, 𝑘⟩, 𝑛/𝑘 voters

submit ⟨{𝑎𝑘+1, . . . , 𝑎2𝑘 }, 1, 1, 𝑘⟩, and so on. If standard approval bal-
lots were used, the first group of voters would approve {𝑎1, . . . , 𝑎𝑘 },
the second group {𝑎𝑘+1, . . . , 𝑎2𝑘 }, and so on. Overall, all alternatives
would be approved by the same number of voters. Thus, if we were

to select a committee of size𝑘 that maximizes the social welfare
3
, for

a suitable tie-breaking rule
4
, {𝑎1, . . . , 𝑎𝑘 } would be selected using

standard approval ballots. This fully satisfies the first voter block,

but no other voters. In the case of bounded approval ballots, we have

3
For a profile of standard approval ballots (𝐴𝑖 )𝑖∈N , the social welfare for a committee

𝜋 is defined as

∑
𝑖∈N |𝐴𝑖 ∩𝜋 |. For a profile of bounded approval ballots𝔅with scoring

function score, the social welfare of a committee 𝜋 is defined as

∑
𝑖∈N score (𝔅, 𝜋 ) .

4
Note that we could also add an extra voter to the first group to make tie-breaking

unnecessary. However, the result would then only hold asymptotically for large 𝑛.

score(𝔅, {𝑎1, . . . , 𝑎𝑘 }) = 𝑛/𝑘, but score(𝔅, {𝑎𝑘 , 𝑎2𝑘 , . . . , 𝑎𝑘2 }) = 𝑛

for any𝜑-based scoring function score. Thus, {𝑎𝑘 , 𝑎2𝑘 , . . . , 𝑎𝑘2 }may

satisfy all voters. △

The example above shows that already for preferences incorpo-

rating approval and substitution, it is possible that only a fraction

of the voters that could be fully satisfied are satisfied in simple

approval voting. This becomes even worse with incompatibilities.

Example 15. (Pure Incompatibility) Assume that for every voter

𝑖 , their preferences are defined such that there exists a set of alter-

natives 𝐴𝑖 ⊆ A for which 𝑖 is unsatisfied whenever |𝜋 ∩ 𝐴𝑖 | ≠ 1

and fully satisfied otherwise. Note that voter 𝑖’s preferences can be

expressed by a bounded set ⟨𝐴𝑖 , 1, 1, 1⟩.
Let 𝑛 ≥ 3, 𝑘 = 2, and A = {𝑎, 𝑏, 𝑐, 𝑑}. Assume that the first

𝑛 − 1 voters submit the ballot ⟨{𝑎, 𝑏}, 1, 1, 1⟩, and the last voter sub-

mits ⟨{𝑐, 𝑑}, 1, 1, 1⟩. It is clear that according to each of our scoring

functions the committees maximizing the social welfare are {𝑎, 𝑐},
{𝑎, 𝑑}, {𝑏, 𝑐}, or {𝑏, 𝑑}. Each of them fully satisfies all voters. Under
standard approval ballots it is reasonable to assume that the first

𝑛 − 1 voters would submit either {𝑎}, {𝑏}, or {𝑎, 𝑏}, and the last

one either {𝑐}, {𝑑}, or {𝑐, 𝑑}. Then, unless the first 𝑛 − 1 voters

all approve of only 𝑎 or only 𝑏 (which is unlikely if communica-

tion is impossible), the committee {𝑎, 𝑏} would maximize the social

welfare. Note that it satisfies no voter at all. △

As voters cannot express incompatibilities in approval ballots, it

is possible that all voters dislike the outcome, but there exists an

outcome fully satisfying every voter. This massive difference comes

solely from the bit of extra information in the bounded ballots.

5 CONCLUSIONS
We proposed bounded approval ballots as an extension to standard

approval ballots. Bounded ballots are cognitively simple to use, and

provide a reasonable surplus in expressiveness. Voters can easily

express not only approval, but also substitution effects, incompat-

ibilities, and dependencies between alternatives. We believe that

these are the most common inter-alternative effects which voters

want to express in multiwinner voting. Voters have indeed a high

incentive to provide the extra information in bounded approval bal-

lots, as it may greatly improve their satisfaction with the outcome.

We defined several scoring functions to evaluate bounded ap-

proval ballots. Our axiomatic study discovered that maintaining

a behavior similar to that of standard approval ballots and simul-

taneously capturing substitution effects is generally impossible.

This however seems to be a general problem that is not specific to

bounded approval ballots. The most convenient way to circumvent

the impossibility is to require bounded sets within a voter’s ballots

to be disjoint.

Of course, we want our ballot format to be used and tested in

real elections. This will be the ultimate test to find out whether the

ballot format is both simple and expressive enough to provide a real

benefit for the voters. To allow interested research teams to make

their own tests, we provide a prototype web-application in the

following GitHub repository: github.com/claussmann/GoodVotes.

https://github.com/claussmann/GoodVotes
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A OMITTED PROOFS
Theorem. The problem of, given a bounded approval profile 𝔅,

a committee size 𝑘 ∈ N and a value 𝑄 ∈ R, deciding whether there

exists a committee 𝜋 ⊆ A of size 𝑘 with scoreapp (𝔅, 𝜋) ≥ 𝑄 is
NP-complete.

Proof. Membership in NP is immediate, the certificate being a

committee leading to a score more than 𝑄 .

To show NP-hardness we reduce from the NP-hard problem Exact

Cover by 3-Sets (see Garey and Johnson [12]). In Exact Cover

by 3-Sets the input is a set 𝑋 with |𝑋 | = 3𝑝 for some 𝑝 ∈ N and

a collection of subsets of 𝑋 , 𝐶 = {𝐶1, . . . ,𝐶 |𝐶 |} such that 𝐶𝑖 ⊆ 𝑋

and |𝐶𝑖 | = 3 for all 1 ≤ 𝑖 ≤ 𝑝 . The question is whether there exists

a subset 𝐶 ′ ⊆ 𝐶 with |𝐶 ′ | = 𝑝 and

⋃
𝑥 ∈𝐶′ 𝑥 = 𝑋 , i.e., where each

element from 𝑋 is covered by exactly one set from 𝐶 ′
.

The reduction works as follows. For each 𝑥𝑖 ∈ 𝑋 , let 𝑋𝑖 = {𝐶 𝑗 |
𝑥𝑖 ∈ 𝐶 𝑗 } be the collection of sets, that contain 𝑥𝑖 . We set A = 𝐶

and introduce 3𝑝 voters, each casting a single bounded approval

ballot 𝑩𝑖 = (⟨𝑋𝑖 , 1, 1, 1⟩) for all 1 ≤ 𝑖 ≤ 3𝑝 , leading to a profile 𝔅.

Obviously, this is possible in polynomial time. We now show that

there exists an exact cover if and only if there exists a committee

𝜋 ⊆ A of size 𝑘 = 𝑝 with scoreapp (𝔅, 𝜋) ≥ 3𝑝 , i.e., 𝑄 = 3𝑝 .

If there is an exact cover 𝐶 ′ ⊆ 𝐶 , it must hold that |𝐶 ′ | = 𝑝

and scoreapp (𝔅,
⋃

𝑥 ∈𝐶′ 𝑥) = 3𝑝 since for every voter 𝑖 it holds

that exactly one element of 𝑋𝑖 is contained in 𝐶 ′
. Conversely, if

scoreapp (𝔅, 𝜋) ≥ 3𝑝 for a 𝑘-size committee 𝜋 , each voter must

receive a score of exactly one. This means that |𝑋𝑖 ∩ 𝜋 | = 1 for

all 1 ≤ 𝑖 ≤ 3𝑝 . In other words, for the committee 𝜋 , that is of size

𝑘 = 𝑝 , it holds that each 𝑥𝑖 is contained in exactly one set from 𝐶 .

This defines an exact cover. □

Theorem 5. The scoring function scoremin satisfies approval, in-
compatibility, dependency, and zero adequacy, as well as ballot-splitting
monotonicity, but it fails substitution adequacy, ballot-size monotonic-
ity, and score monotonicity.

Proof. Let 𝑩 be an arbitrary ballot and 𝜋 an arbitrary commit-

tee.

Approval Adequacy (✓) For every alternative 𝑎 ∈ 𝜋 , scoremin
scores the fulfillment of one bounded set. Since the fulfillment

is a number between 0 and 1, we clearly have scoremin (𝑩, 𝜋) ≤
|
(⋃

𝐵 𝑗 ∈𝑩 𝐴
𝑗
)
∩ 𝜋 |.

Now assume that ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 for all 𝐵 𝑗 ∈ 𝑩. Then, for
all 𝐵 ∈ 𝑩, we have 𝜑 (𝐵, 𝜋) = 1. Each alternative in 𝜋 then scores 1,

meaning that scoremin (𝑩, 𝜋) = |
(⋃

𝐵 𝑗 ∈𝑩 𝐴
𝑗
)
∩ 𝜋 |. ◦

Substitution Adequacy (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2},
and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 1, 2⟩ , ⟨{𝑎1, 𝑎3}, 1, 1, 2⟩). Note that 𝑎3 fulfills

the conditions required for 𝑎★ in the definition of substitution

adequacy. In the one hand, we have scoremin (𝑩, 𝜋) = 1/2 + 1/2 = 1.

On the other hand, for 𝜋 ′ = {𝑎1, 𝑎2, 𝑎3}, we have scoremin (𝑩, 𝜋 ′) =
1/2 + 1/2 + 1/2 = 3/2 > 1. ◦
Incompatibility Adequacy (✓) Consider an arbitrary bounded

set 𝐵 = ⟨𝐴, 1, 1, 1⟩ for 𝐴 ⊆ A. Let 𝑩′ = 𝑩 ⊕ 𝐵.

For any 𝜋 such that |𝜋 ∩ 𝐴| = 1, we have 𝜑 (𝐵, 𝜋) = 1. For all

alternatives 𝑎 ∈ 𝜋 \𝐴, the minimum fulfillment will be the same in

𝑩 and 𝑩′
. And for 𝑎 ∈ 𝜋 ∩𝐴, the minimum can only increase. We

thus have scoremin (𝑩, 𝜋) ≤ scoremin (𝑩′, 𝜋).
If |𝜋 ∩𝐴| ≠ 1, then 𝜑 (𝐵, 𝜋) = 0. By the same reasoning as above,

we get that scoremin (𝑩, 𝜋) ≥ scoremax (𝑩′, 𝜋). ◦



Dependency Adequacy (✓) Consider an arbitrary bounded set

𝐵 = ⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩ for 𝐴 ⊆ A. Let 𝑩′ = 𝑩 ⊕ 𝐵.

For any 𝜋 such that 𝐴 ⊆ 𝜋 , we have 𝜑 (𝐵, 𝜋) = 1. For all alterna-

tives 𝑎 ∈ 𝜋 \𝐴, the minimum fulfillment will be the same in 𝑩 and

𝑩′
. And for 𝑎 ∈ 𝜋 ∩ 𝐴, the minimum can only increase. We thus

have scoremin (𝑩, 𝜋) ≤ scoremin (𝑩′, 𝜋).
If 𝐴 ⊈ 𝜋 , then 𝜑 (𝐵, 𝜋) = 0. By the same reasoning as above, we

get that scoremin (𝑩, 𝜋) ≥ scoremax (𝑩′, 𝜋). ◦
Zero Adequacy (✗) LetA = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2, 𝑎3}, and 𝑩 =

(⟨{𝑎1, 𝑎2}, 1, 1, 2⟩ , ⟨{𝑎1, 𝑎2, 𝑎3}, 1, 2, 2⟩). We have scoremin (𝑩, 𝜋) = 0

which violates zero adequacy. ◦
Ballot-Size Monotonicity (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2},
and 𝑩 = (⟨{𝑎1, 𝑎2, 𝑎3}, 1, 2, 2⟩). Here, we have scoremin (𝑩, 𝜋) = 2.

Now, for 𝑩′ = 𝑩 ⊕ ⟨{𝑎1, 𝑎2}, 1, 1, 2⟩, we obtain scoremin (𝑩′, 𝜋) = 1.

This is a violation of ballot-size monotonicity. ◦
Ballot-Splitting Monotonicity (✓) By the definition of ballot-

splittingmonotonicity, we replace a bounded set𝐵 such that𝜑 (𝐵, 𝜋) =
1 by bounded sets also with fulfillment 1. This operation is neutral

on the minimal fulfillment for all alternatives, meaning that the

score does not change. ◦
Score Monotonicity (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2}, and
𝑩 = (⟨{𝑎1, 𝑎3}, 1, 1, 2⟩ , ⟨{𝑎2, 𝑎3}, 1, 1, 2⟩). We have scoremin (𝑩, 𝜋) =
2. However, scoremin (𝑩, 𝜋 ∪ {𝑎3}) = 3/2 < 2. □

We focus now on scoremax .

Theorem 6. The scoring function scoremax satisfies substitution,
incompatibility, dependency, and zero adequacy, as well as ballot-size
monotonicity, score monotonicity, and ballot-splitting monotonicity,
but it fails approval adequacy.

Proof. Let 𝑩 be an arbitrary ballot and 𝜋 an arbitrary commit-

tee.

Approval Adequacy (✓) For every alternative 𝑎 ∈ 𝜋 , scoremax
scores the fulfillment of one bounded set. Since the fulfillment

is a number between 0 and 1, we clearly have scoremax (𝑩, 𝜋) ≤
|
(⋃

𝐵 𝑗 ∈𝑩 𝐴
𝑗
)
∩ 𝜋 |.

Now assume that ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 for all 𝐵 𝑗 ∈ 𝑩. Then, for
all 𝐵 ∈ 𝑩, we have 𝜑 (𝐵, 𝜋) = 1. Each alternative in 𝜋 then scores 1,

meaning that scoremax (𝑩, 𝜋) = |
(⋃

𝐵 𝑗 ∈𝑩 𝐴
𝑗
)
∩ 𝜋 |. ◦

Substitution Adequacy (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2},
and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 2, 2⟩ , ⟨{𝑎1, 𝑎3}, 1, 1, 2⟩). Note that 𝑎3 fulfills

the conditions required for 𝑎★ in the definition of substitution

adequacy. In the one hand, we have scoremax (𝑩, 𝜋) = 1 + 1 = 2.

On the other hand, for 𝜋 ′ = {𝑎1, 𝑎2, 𝑎3}, we have scoremax (𝑩, 𝜋 ′) =
1 + 1 + 1/2 = 5/2 > 2. ◦
Incompatibility Adequacy (✓) Consider an arbitrary bounded

set 𝐵 = ⟨𝐴, 1, 1, 1⟩ for 𝐴 ⊆ A. Let 𝑩′ = 𝑩 ⊕ 𝐵.

For any 𝜋 such that |𝜋 ∩ 𝐴| = 1, we have 𝜑 (𝐵, 𝜋) = 1. For all

alternatives 𝑎 ∈ 𝜋 \𝐴, the maximum fulfillment will be the same

in 𝑩 and 𝑩′
. And for 𝑎 ∈ 𝜋 ∩𝐴, the maximum fulfillment is 1. We

thus have scoremax (𝑩, 𝜋) ≤ scoremax (𝑩′, 𝜋).
If |𝜋 ∩𝐴| ≠ 1, then 𝜑 (𝐵, 𝜋) = 0. By the same reasoning as above,

we get that scoremax (𝑩, 𝜋) = scoremax (𝑩′, 𝜋). ◦
Incompatibility Adequacy (✓) Consider an arbitrary bounded

set 𝐵 = ⟨𝐴, 1, 1, 1⟩ for 𝐴 ⊆ A. Let 𝑩′ = 𝑩 ⊕ 𝐵.
For any 𝜋 such that 𝐴 ⊆ 𝜋 , we have 𝜑 (𝐵, 𝜋) = 1. For all alterna-

tives 𝑎 ∈ 𝜋 \𝐴, the maximum fulfillment will be the same in 𝑩 and

𝑩′
. And for 𝑎 ∈ 𝜋 ∩𝐴, the maximum fulfillment is 1. We thus have

scoremax (𝑩, 𝜋) ≤ scoremax (𝑩′, 𝜋).
If 𝐴 ⊈ 𝜋 , then 𝜑 (𝐵, 𝜋) = 0. By the same reasoning as above, we

get that scoremax (𝑩, 𝜋) = scoremax (𝑩′, 𝜋). ◦
Zero Adequacy (✓) Note that we always have scoreavg (𝑩, 𝜋) ≥ 0.

Moreover, scoremax (𝑩, 𝜋) = 0 iff 𝜑 (𝐵 𝑗 , 𝜋) = 0 for all 𝐵 𝑗 ∈ 𝑩, which
holds iff for all 𝐵 𝑗 ∈ 𝑩, either |𝐴 𝑗 ∩ 𝜋 | > 𝑢 𝑗

or |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 . ◦
Ballot-Size Monotonicity (✓) Consider an arbitrary bounded

set 𝐵 = ⟨𝐴, ℓ, 𝑠,𝑢⟩ and let 𝑩′ = 𝑩 ⊕ 𝐵. For all alternatives in 𝜋 \𝐴,
the maximum fulfillment will be the same in 𝑩 and 𝑩′

. For the

alternatives in 𝐴 ∩ 𝜋 , the maximum fulfillment can only increase.

Overall, we have scoremax (𝑩, 𝜋) ≤ scoremax (𝑩′, 𝜋). ◦
Ballot-Splitting Monotonicity (✓) By the definition of ballot-

splittingmonotonicity, we replace a bounded set𝐵 such that𝜑 (𝐵, 𝜋) =
1 by bounded sets also with fulfillment 1. This operation is neutral

on the maximum fulfillment for all alternatives, meaning that the

score does not change. ◦
Score Monotonicity (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2}, and
𝑩 = (⟨{𝑎1, 𝑎3}, 1, 1, 2⟩ , ⟨{𝑎2, 𝑎3}, 1, 1, 2⟩). We have scoremax (𝑩, 𝜋) =
2. However, scoremax (𝑩, 𝜋 ∪ {𝑎3}) = 3/2 < 2. □
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