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Abstract
Participatory Budgeting (PB) processes are usu-
ally designed to span several years, with referenda
for new budget allocations taking place regularly.
This paper presents a first formal framework for
long-term PB, based on a sequence of budgeting
problems as main input. We introduce a theory
of fairness for this setting, focusing on three main
concepts that apply to types (groups) of voters:
(i) achieving equal welfare for all types, (ii) min-
imizing inequality of welfare (as measured by the
Gini coefficient), and (iii) achieving equal welfare
in the long run. For different notions of welfare,
we investigate under which conditions these crite-
ria can be satisfied, and analyze the computational
complexity of verifying whether they hold.

1 Introduction
Participatory Budgeting (PB) is a democratic tool in which
citizens are asked their opinion on how to spend a public
budget [Cabannes, 2004; Shah, 2007]. This process is now
applied , which was invented in Brazil, is now used in many
cities all around the world [Dias et al., 2019]. The way it is
precisely organized differs from place to place but generally
the same two-stage structure is adopted [Shah, 2007]: first
citizens propose projects and then they vote on these projects.
Based on these votes, a set of projects is chosen that can be
implemented with the available budget. Importantly, PB is
usually planned to run for several years. For instance, a par-
ticipatory budgeting process in Paris spanned 6 years (from
2014 to 2020) [City of Paris, 2020], and New York runs an
ongoing program since 2011 [New York City Council, 2020].
The general idea of PB is to establish it as a regular, ongoing
process for sustained citizen participation.

Even though PB has received substantial attention in recent
years through the lens of (computational) social choice [Aziz
and Shah, 2020], its formalizations generally consider PB as
a one-shot process. This assumption significantly limits the
scope of an analysis. In particular, it disregards the possibility
of achieving fair outcomes over time, although a fair solution
may be impossible to obtain in individual PB instances. The
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main purpose of our work is to close this gap: we introduce
perpetual participatory budgeting, a formal framework that
encompasses key characteristics of long-term PB.

The long-term perspective of perpetual PB leads to con-
ceptual challenges but brings notable advantages. To high-
light the potential of this approach, we introduce and study
notions of fairness in this setting and analyze to which extent
strong fairness guarantees can be achieved in long-term pro-
cesses. We are mainly concerned with fairness towards types
of voters. A type is a pre-defined subset of voters, for exam-
ple all voters in a certain district or socio-demographic groups
(e.g., age, education, income). Furthermore, to be able to
speak about fairness, we have to specify how we measure the
welfare of types. We consider three main forms of welfare:
The first is satisfaction, which intuitively corresponds to the
agreement between a voter’s ballot and the chosen projects,
weighted by cost. The satisfaction of a type is the average
satisfaction of its voters. The second welfare notion is rela-
tive satisfaction, which is similar to satisfaction but measures
the satisfaction relative to the voter’s maximally achievable
satisfaction. The third is the share of a type, which is the
money spent on satisfying this type. It is natural to require
that a type’s share is proportional to its size.

In a first step, we define a very strong fairness criterion by
requiring that all types achieve the same welfare. This is not
only unachievable for obvious reasons in single-round PB,
but we can show that there are arbitrary long perpetual PB
instances where equal welfare remains unachievable. How-
ever, while equal welfare is often unattainable, different sets
of projects can lead to vastly different distributions of wel-
fare. Thus, as a second fairness criterion, we use the Gini
index, a well-known inequality measure for income, to mea-
sure inequality with respect to welfare. This measure can be
used, e.g., to analyze real-world budget allocations. In this
paper, we take a computational approach: given a perpetual
PB instance, we can use the Gini index as an optimization
goal and search for the least unequal budget allocation. We
show that testing for the optimality of a solution is already
co-NP-complete, even in simple settings.

As a third fairness criterion we require that all types have
the same welfare in the long run, i.e., they are asymptotically
equal. Our main result for this fairness criterion is that it is
always possible to achieve equal relative satisfaction in the
limit if there are only two types. In contrast, equal shares and



equal-satisfaction are impossible to achieve even in the long
run, in particular due to inhomogeneous types. It remains an
interesting open problem whether equal relative satisfaction
can be guaranteed in the limit for any number of types.

To sum up, our paper contains two main contributions:
(i) the framework of perpetual participatory budgeting and
(ii) the analytic and computational study of three fairness cri-
teria in this framework. These (strong) fairness criteria cannot
be guaranteed in a single round of PB and thus necessitate our
perpetual setting.

Related Work. The standard PB setting from the perspec-
tive of computational social choice has been extensively de-
scribed [Lu and Boutilier, 2011; Talmon and Faliszewski,
2019; Aziz and Shah, 2020], and has then been extended
in several directions [Jain et al., 2020; Rey et al., 2020;
Shapiro and Talmon, 2017; Benadè et al., 2020; Baumeis-
ter et al., 2020; Peters et al., 2020; Skowron et al., 2020;
Laruelle, 2021]. The main focus of prior works were norma-
tive properties: e.g., monotonicity [Talmon and Faliszewski,
2019], strategy-proofness [Goel et al., 2019; Freeman et al.,
2019], the core property [Fain et al., 2016], and proportion-
ality [Aziz et al., 2018]. A recent study of district fairness
[Hershkowitz et al., 2021] investigates whether a city-wide
PB can guarantee each district the social welfare they would
have had by running a district-wide PB. While we consider
districts (called types), our notions of fairness differ.

None of the aforementioned works consider participatory
budgeting as a repeating, ongoing process. We are only
aware of one exception in which the outcome of the previ-
ous year is taken into account to compute a budget allocation
[Shapiro and Talmon, 2017] (only for tie-breaking however).
We take previous rounds of PB into account in a more com-
prehensive fashion. Finally, let us mention that our “perpet-
ual” perspective has been also considered in classical voting
[Lackner, 2020] and utility aggregation [Freeman et al., 2017;
Freeman et al., 2018].

2 Motivating Example
Let us begin with an example that demonstrates the advan-
tages of taking a long-term perspective for PB.

Example 1. Imagine a city with five inhabitants (1 to 5).
There are two districts: 1, 2 and 3 live in the first district (type
t1) and 4 and 5 in the second one (type t2). A PB process will
be run over the next three years with a vote occurring every
year. The following table indicates—per year—the proposed
projects, their cost and the agents’ approval ballots. A check
mark (3) indicates that the agent approves of the project. The
budget limit for every year is 10.

Year 1 Year 2 Year 3
Projects p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Cost 6 2 2 4 5 5 3 2 7 7 4/3 29/3

t1

{
1
2
3

3
3
3

3
3

3

3
3
3

3

3

3
3
3

3
3
3

3
3
3

t2

{
4
5

3
3

3
3

3
3

3
3

3 3
3

3 3
3

We assume an online process: when the budgeting decision
has to be made for a given year, only the past is known and
agents have no knowledge about future years.

Now, suppose that the municipality wants to select bud-
get allocations that maximize either the total number of ap-
provals1 or the total number of approvals weighted by the
cost2 (the most commonly used methods in real-life [Aziz and
Shah, 2020]). In both cases, all projects that are boxed in the
table would be selected (if ties are broken accordingly).

It can be argued that these outcomes are not particularly
fair with respects to the two districts. Agents in district t1 are
favored by the outcomes. For example, 1, 2 and 3 approve on
average roughly 90% of the selected projects, while 4 and 5
only roughly 40%. As will be shown later in the paper (Ex-
amples 2 and 4), it is actually possible to reach a much more
equal treatment of the two districts in the last year, by tak-
ing into account what happened during the first two years. In
this paper, we introduce concepts that make precise in which
sense the modified solutions are fairer than the original one,
and we discuss whether fair solutions are guaranteed to exist.

3 Perpetual Participatory Budgeting
In essence, our framework consists of a sequence of budget-
ing problems over several rounds. Let P be the set of all the
projects occurring throughout the process. Their cost is given
by the cost function c : P→ N. To simplify the notation, we
will write c(P ) instead of

∑
p∈P c(p) for any P ⊆ P. More-

over, let N be the set of agents taking part in the process; we
assume this set to remain the same in all rounds. Every agent
belongs to a type that can represent the district she lives in or
any other characteristics. Observe that each agent can have
her own type. All our fairness notions and results extend to
this special case. Let T be the set of types, the type function
T : N → T indicates for every agent i ∈ N her type T (i).
For simplicity, we will sometimes consider a type t ∈ T as
the set of agents having this type {i ∈ N | T (i) = t}. In that
respect, |t| denotes the number of agents having type t ∈ T .
Definition 1 (Budgeting problem). A budgeting problem for
round j is defined by the tuple Ij = 〈Pj , bj , Aj〉 where:

• Pj ⊆ P is the set of available projects,
• bj ∈ N>0 is the available budget,

• Aj : N → 2Pj is the approval function giving for every
i ∈ N the set of projects Aj(i) ⊆ Pj she approves of.

We also make the assumption that every project is approved
by at least one agent and that every agent approves of at least
one project; projects without approvals as well as agents with
empty ballots can be removed in a pre-processing stage.

The outcome of a budgeting problem Ij = 〈Pj , bj , Aj〉 is
a budget allocation πj ⊆ Pj . It is feasible if c(πj) ≤ bj and
A(Ij) is the set of all feasible budget allocations for Ij . It is
exhaustive if it is feasible and there is no project p ∈ Pj \ π
such that c(π ∪ {p}) ≤ bj . We also speak about feasible and
exhaustive ballots using the same definition. Feasible ballots
are usually referred to as knapsack ballots.

1The sum of approvals of the selected projects.
2The sum over the selected projects of their cost times approval.



A perpetual participatory budgeting instance of length k ∈
N>0 ∪ {∞} (or k-PPB instance) is a sequence of k budget-
ing problems I = (I1, . . . , Ik). A vector π = (π1, . . . , πk)
where πj ⊆ Pj for every round j ∈ {1, . . . , k} will be called
a solution for I . It is said to be feasible (resp. exhaustive) for
I if every πj ∈ π is feasible (resp. exhaustive) for Ij .3

4 A Fairness Theory for PPB
Solutions can benefit some types while disadvantaging oth-
ers. To be able to reason about the quality of solutions, we
will introduce several fairness criteria. In order to discuss
whether a solution is fair or unfair, we first need a way to
measure the welfare of types.
Definition 2 (Welfare Measure). A welfare measure F is a
function taking as inputs a k-PPB instance I , a solution π,
a type t ∈ T and a round j ∈ {1, . . . , k} and returning the
welfare score F (I,π, t, j) ∈ R for type t of the solution π
for the first j rounds of I .

Let us begin with fairness criteria. Specific welfare mea-
sures are introduced in a second time.

4.1 Fairness Criteria
The foundation of our fairness theory is that the fairest solu-
tion should be so that all types are treated exactly the same
and thus enjoy the same level of welfare. This requirement is
our first fairness criteria.
Definition 3 (Equal-F ). For a welfare measure F , a solution
π for the k-PPB instance I satisfies equal-F at round j ∈
{1, . . . , k} if for every two types t, t′ ∈ T , we have:

F (I,π, t, j) = F (I,π, t′, j).

Moreover, a solution π satisfies equal-F if it is equal-F at
round j for all rounds j ∈ {1, . . . , k}.

As Equal-F can be too strong of a requirement, we intro-
duce two relaxations in the following.

A first approach when perfect fairness cannot be achieved,
is to try to optimize for it. This idea is particularly rele-
vant when the long-term perspective is adopted as subsequent
rounds can compensate for unfairness in previous rounds.
We pursue this approach by introducing the Gini coefficient
[Gini, 1912] of a solution—a well-known measure of inequal-
ity given a multi-set of values—that can be used as a min-
imization objective. In the following, we use the standard
formulation [Blackorby and Donaldson, 1978].
Definition 4 (F -Gini). Let #»v = (v1, . . . , vk) ∈ Rk be a
vector ordered in non-increasing order, i.e., such that vi ≥ vj
for all 1 ≤ i ≤ j ≤ k. The Gini coefficient of #»v is given by:

gini( #»v ) = 1−
∑k
i=1(2i− 1)vi

k
∑k
i=1 vi

.

For a welfare measure F , the F -Gini coefficient of a solution
π for the k-PPB instance I at round j ∈ {1, . . . , k} is then:

giniF (I,π, j) = gini(
#»

F (I,π, j)),

3One could weaken the feasibility requirement of solutions by
allowing unused budget to be used in later rounds. For our results, it
is not relevant which definition we take.

where
#»

F (I,π, j) is a vector containing F (I,π, t, j) for all
types t ∈ T , ordered in non-increasing order.

A solution π is F -Gini-optimal at round j with respect to
a set S of solutions for I , if there is no solution π′ ∈ S \ {π}
with giniF (I,π

′, j) < giniF (I,π, j).
It can be checked that F -Gini-optimality is indeed a relax-
ation of equal-F in the sense that for all welfare measure F ,
a solution π satisfies equal-F if and only if its F -Gini coeffi-
cient reaches 0 (the minimum of the F -Gini coefficient).

Another approach we follow is to require perfect fairness
but only in the long run. For that we introduce convergence to
equal-F which formalizes the idea of asymptotically equaliz-
ing the welfare of the different types.
Definition 5 (Convergence to equal-F ). For a welfare mea-
sure F , a solution π for the∞-PPB instance I converges to
equal-F if for every two types t, t′ ∈ T :

F (I,π, t, k)

F (I,π, t′, k)
−→
k→+∞

1.

We will study the computational complexity of the fol-
lowing problems related to these fairness criteria. Note that
this computational analysis does not apply for convergence to
equal-F as we deal with infinite sequences there.

EQUAL-F

Input: A k-PPB instance I = (I1, . . . , Ik) and a solution
π = (π1, . . . , πk−1).

Question: Is there a non-empty and feasible budget allocation
πk for Ik such that (π1, . . . , πk−1, πk) provides
equal-F at round k?

F -GINI-OPTIMALITY

Input: A k-PPB instance I = (I1, . . . , Ik) and a solution
π = (π1, . . . , πk).

Question: Is π Gini-optimal at round k w.r.t. all non-empty,
feasible solutions?

4.2 Welfare Measures
The first welfare measures we define are based on the satis-
faction of an agent. Even though agents can have personal
utility functions to express their satisfaction for a given out-
come (e.g. [Peters et al., 2020]), this information is usually
private, i.e., unknown to the decision maker. We thus need to
approximate the satisfaction of an agent. We use a standard
definition for satisfaction [Talmon and Faliszewski, 2019].
Definition 6 (Satisfaction). Let I = (I1, . . . , Ik) be a k-PPB
instance and π = (π1, . . . , πk) a solution for I . For round
j ∈ {1, . . . , k}, whose budgeting problem is 〈Pj , bj , Aj〉, we
define the marginal satisfaction of agent i ∈ N as:

satmj (I, πj , i) = c(πj ∩Aj(i)).
Moreover, the marginal satisfaction and the satisfaction of a
type t ∈ T for round j ∈ {1, . . . , k} are defined by:

satmj (I, πj , t) =
1

|t|
∑
i∈t

satmj (I, πj , i)

satj(I,π, t) =
∑

1≤j∗≤j

satmj∗(I, πj∗ , t).



Satisfaction Relative Satisfaction Share

2 agents 3 agents > 3 agents Complex. 2 types > 2 types Complex. 2 agents > 2 agents Complex.

equal-F 7 7 7 NP-c 7 7 NP-c 7 7 NP-c
conv. to equal-F 3 3 (ex. ballots) 7 3 (knap. ballots) ? 3 7
F -Gini optimality 3 3 3 co-NP-c 3 3 co-NP-c. 3 3 co-NP-c

Table 1: Summary of the results. The columns specifying a number of agents/types are for existence guarantees: a 3 indicates that for all
instances with the specified number of agents/types, there exists a solution satisfying the fairness criteria; and the 7 the opposite. The tags
“ex. ballots” and “knap. ballots” indicates that the result only holds with exhaustive or knapsack ballots. The column “Complex.” indicates
the computational complexity of the problems stated in Section 4.1 where NP-c stands for NP complete and co-NP-c for co-NP complete.

Example 2. Let us illustrate satisfaction on Example 1. It
can be checked that by the end of year 2, the satisfaction of
type t1 is 17 + 2/3 while that of type t2 is only 8. Hence,
selecting only p12 in the last year would lead to a solution
such that both types would have a satisfaction of 17 + 2/3.

One potential drawback of satisfaction is its strong de-
pendence on voters’ approval sets. For example, if agent 1
approves a proper subset of agent 2’s approved projects
(Aj(1) ⊂ Aj(2)) and all their approved projects are funded
(Aj(2) ⊆ πj), then agent 2 is more satisfied than agent 1.
However, it can be argued that the welfare of both agents
should be equal as all projects they wanted to be funded have
actually been funded; neither agent 1 or 2 can be made hap-
pier (subject to the available information). To take this into
account, we define relative satisfaction which measures how
close the satisfaction of an agent is to his best-case scenario.
Definition 7 (Relative satisfaction). Let I = (I1, . . . , Ik) be
a k-PPB instance and π = (π1, . . . , πk) a solution for I . For
round j ∈ {1, . . . , k} corresponding to the budgeting prob-
lem 〈Pj , bj , Aj〉, we define the marginal relative satisfaction
of agent i ∈ N as:

rsatmj (I, πj , i) =
c(πj ∩Aj(i))

max{c(A) | A ⊆ Aj(i) and c(A) ≤ bj}
.

Moreover, marginal relative satisfaction and the relative sat-
isfaction of a type t ∈ T for the round j ∈ {1, . . . , k} are
defined as follows:

rsatmj (I, πj , t) =
1

|t|
∑
i∈t

rsatmj (I, πj , i)

rsatj(I,π, t) =
∑

1≤j∗≤j

rsatmj∗(I, πj∗ , t).

Example 3. In Example 1, the relative satisfaction scores by
the end of year are 23/12 for type t1 and 53/48 for type t2. One
can verify that there is no budget allocation for the third year
that would lead to equal-relative satisfaction.

Satisfaction and relative satisfaction are two concepts
which relate to the idea of utilitarianism. Indeed, only the
impact of the selected solution on the agents or types is taken
into consideration and not the way the resources were spent.
Although utilitarian welfare is attractive, other notions can be
considered in participatory budgeting. The most important
alternative might be distributive welfare which aims at spend-
ing an equal amount of resources on each agent or type. To
account for distributive welfare, we introduce another welfare
measure called the share of a type.

Definition 8 (Share). Let I = (I1, . . . , Ik) be a k-PPB in-
stance with a solution π = (π1, . . . , πk). For round j ∈
{1, . . . , k} with budgeting problem 〈Pj , bj , Aj〉, the marginal
share of agent i ∈ N is defined as:

sharemj (I, πj , i) =
∑

p∈πj∩Aj(i)

c(p)

|{i′ ∈ N | p ∈ Aj(i′)}|

Moreover, the marginal share and the share of a type t ∈ T
for round j ∈ {1, . . . , k} are defined as:

sharemj (I, πj , t) =
1

|t|
∑
i∈t

sharemj (I, πj , i)

sharej(I,π, t) =
∑

1≤j∗≤j

sharemj∗(I, πj∗ , t).

Example 4. Once again coming back to Example 1, we can
show that equal-share can be achieved by the end of the last
year. Indeed by the end of year 2, the shares are 5+ 1/3 for t1
and 2 for t2. Now, by selecting p10 and p11 in the third year,
we reach a solution where each type has a share of 5 + 2/3.

Observe that trying to equalize the shares of the different
types requires the average share of each type to be equal,
meaning that we require the total share of a type to be propor-
tional to its size. In this sense, the fairness criteria equal-share
can be considered a proportionality concept.

Note that relative share—in contrast to relative
satisfaction—is not a very sensible property as distribu-
tive fairness should hardly depend on the ballots.

5 Realizing Fairness
We will now explore the fairness criteria and the welfare mea-
sures we have defined previously. All our results are summa-
rized in Table 1. Note that most of the proofs are omitted due
to space constraints but can be found in the appendix.

5.1 Achieving Perfect Fairness: Equal-F
We first explore the criteria that we consider to represent a
situation of perfect fairness: equal-F .

Unfortunately, it is easy to check that equal-F cannot be
guaranteed even for a single round (except by selecting an
empty budget allocation) for all of our welfare measures.
Consider the following example with two agents where no
non-empty solution satisfies either equal-satisfaction, equal-
relative satisfaction or equal-share in any round.



Example 5. Let I be a k-PPB instance with two agents 1 and
2 of types t1 and t2 respectively. Furthermore, let bj = 1 for
every round j ∈ {1, . . . , k} and let c(p) = 1 for all p ∈ P.

In the first round, agent 1 approves only of project p1 and
agent 2 only of p2. In all following rounds, they both only
approve of p1. Assume w.l.o.g. that p1 is selected in the first
round. Then, for every solution π = (π1, . . . , πk), at round
j ∈ {2, . . . , k}, we have Fj(I,π, t1) = 1 + Fj(I,π, t2) for
all three of our welfare measures F .

The example shows that in general, equal-F cannot be sat-
isfied for our welfare measures. However, it could still be
achieved on some specific instances. It turns out that for all
three welfare measures, checking the existence of an equal-F
solution is an NP-complete problem.
Proposition 1. The EQUAL-SATISFACTION and EQUAL-
RELATIVE SATISFACTION problems are strongly NP-
complete even if there is only one round.
Proposition 2. The EQUAL-SATISFACTION and EQUAL-
SHARE problems are weakly NP-complete even if there is only
one round and there are only two agents.

Proof (Sketch). We reduce from SUBSET SUM [Karp, 1972],
i.e., the problem of finding a subset Z ′ of a set Z ⊂ Z such
that

∑
Z ′ = 0: Consider a PB instance with a project pz

for every z ∈ Z such that c(pz) = |z|. Further, there are
two agents, v+ and v− approving all projects pz with z ≥
0 resp. z < 0. We claim that this is a positive instance of
EQUAL-SATISFACTION and EQUAL-SHARE if and only if Z
is a positive instance of SUBSET SUM.

We observe that both results still hold if we additionally
require exhaustiveness, i.e., if we ask whether there is an ex-
haustive solution that satisfies equal-F .

5.2 Optimizing for Fairness: F -Gini-optimality
Let us now turn our attention to F -Gini-optimality. Note first
that—by definition—there will always be for every instance
at least one solution which is F -Gini-optimal. Therefore, the
main questions here concern computational problems and are
not about existence guarantees.

We first show that F -GINI-OPTIMALITY is co-NP-
complete for both satisfaction and share.
Proposition 3. SATISFACTION-GINI-OPTIMALITY,
RELATIVE-SATISFACTION-GINI-OPTIMALITY and
SHARE-GINI-OPTIMALITY are weakly co-NP-complete
even if there is only one round and two agents.

We note that it is also co-NP-complete to check whether a
solution is Gini-optimal among exhaustive solutions. An in-
teresting open question is the complexity of finding a Gini-
optimal solution that maximizes the overall welfare of the
population.

5.3 Achieving Fairness in the Long Run:
Convergence to Equal-F

Let us conclude our analysis by investigating convergence to
equal-F . We first show that for two agents convergence to
equal-satisfaction can always be guaranteed (under mild ad-
ditional assumptions).

Proposition 4. Consider an ∞-PPB instance I with two
agents such that there exists a constantB? ∈ N with bj ≤ B?
for every round j. Furthermore, assume for every round and
both agents that there is a project p with c(p) ≤ bj that the
agent approves of. Then, there is a non-empty feasible solu-
tion that converges to equal-satisfaction.

Proof. Call the agents 1 and 2 and assume they belong to
types t1 and t2 respectively (as equal-satisfaction is trivially
satisfied if there is only one type). We claim that there exists
a solution π such that for every round j, we can guarantee:

satj(I,π, t1)−B? ≤ satj(I,π, t2) ≤ satj(I,π, t1)+B?.

Let us prove the claim by induction. For the first round, it
is clear that whichever non-empty budget allocation has been
chosen, we have 0 ≤ sat1(I,π, t) ≤ B? for t ∈ {t1, t2}.

Now assume the claim holds for round j − 1. W.l.o.g. as-
sume satj−1(I,π, t2) ≤ satj−1(I,π, t1). Let p be a project
approved by 2 such that c(p) ≤ bj . Then, we set πj = {p}.
This implies that

satmj (I, πj , t1) ≤ satmj (I, πj , t2) ≤ B∗

From this together with the induction hypothesis and the as-
sumption satj−1(I,π, t2) ≤ satj−1(I,π, t1) we can con-
clude that the claim also holds in round j.

Now, we know that satj(I,π, t1) + satj(I,π, t2) ≥∑j
j′=1 c(πj′). Together with the claim, this implies that
lim

j→+∞
(satj(I,π, t1)) = lim

j→+∞
(satj(I,π, t2)) = +∞.

Therefore, the proposition follows from the following:

satj(I,π, t1)−B?

satj(I,π, t1)
≤ satj(I,π, t2)

satj(I,π, t1)
≤ satj(I,π, t1) +B?

satj(I,π, t1)
.

Unfortunately, this result cannot be generalized—even for
three agents—as the following example shows.

Example 6. Let I be a ∞-PPB instance with three agents
1, 2, 3 where agent 1 has type t1 and agents 2 and 3 have
type t2. Assume bj = 1 for every round j and c(p) = 1 for
all projects p ∈ P. In every round, there are two projects
and agent 1 approves of both, 2 approves of only one and 3
of the other one. Then, for every non-empty feasible solu-
tion π and every round j, we have satj(I,π, t1) = j and
satj(I,π, t2) =

j
2 . Therefore, we have

lim
j→+∞

(
satj(I,π, t2)

satj(I,π, t1)

)
=

1

2
.

This counter-example can be avoided if we impose some
restrictions on the ballots the agents may submit. Indeed, if
ballots are exhaustive then, for three agents we can always
find a solution that converge to equal-satisfaction.

Proposition 5. Consider an ∞-PPB instance I with three
agents where the ballot of each agent is exhaustive in every
round and there exists a constant B? ∈ N with bj ≤ B? for
every round j. Then, there is a non-empty feasible solution
that converges to equal-satisfaction.



However, by increasing the number of agents we again en-
counter an impossibility, even with these restricted ballots.
Example 7. Let I be a ∞-PPB instance. In every round
j, we have bj = 10, there are eight agents 1, . . . , 8 such that
1, 2, 3 have type t1 and 4, 5, 6, 7, 8 have type t2. Furthermore,
there are six projects p1, . . . , p6 such that c(p1) = c(p2) =
c(p3) = 5 and c(p4) = c(p5) = c(p6) = 3. The ballots are
such that, for every round j:
Aj(1) = {p1, p4} Aj(2) = {p2, p5} Aj(3) = {p3, p6}
Aj(4) = {p1, p2} Aj(5) = {p1, p3} Aj(6) = {p2, p3}

Aj(7) = {p4, p5, p6} Aj(8) = {p4, p5, p6}
We leave it to reader to check that for each project the
marginal satisfaction for type t2 is higher than for type t1.
This directly implies that there can be no non-empty solution
converging to equal-satisfaction.

Results about convergence to equal-share are very similar
to the ones with equal-satisfaction. By a similar argument
as for Proposition 4, we can show that convergence to equal-
share can be achieved for two agents. Unfortunately, we can-
not go far beyond this, as the following example shows.
Example 8. Consider again the same ∞-PPB instance as
in Example 7. We claim that for every project, selecting it
would lead to a higher share for type t2 than that of type t1.
For project p1, we have share1(I, {p1}, t1) = 1

3 ·
5
3 = 5

9 but
share1(I, {p1}, t2) = 1

5 (
5
3 + 5

3 ) = 2
3 . The case for p2 and

p3 is similar. For p4, we have share1(I, {p4}, t1) = 1
3 ·

3
3 =

1
3 but share1(I, {p4}, t2) = 1

5 (
3
3 + 3

3 ) = 2
5 . The case for

projects p5 and p6 is similar. It follows that, in this example,
we cannot have convergence to equal shares.

Results are more positive when it comes to relative sat-
isfaction. Indeed, we can guarantee convergence to equal-
relative satisfaction when there are two types. Note that this
result is much more general than Lemma 4 as types may con-
tain an arbitrary number of agents. The proof is based on the
following lemma stating that with two types, we can always
favor one type over the other.
Lemma 6. Let I be a k-PPB instance with non-empty knap-
sack ballots and two types t1 and t2. Then, in every round
j ∈ {1, . . . , k} there are two feasible budget allocations π1
and π2 such that:

0 < rsatmj (I, π1, t1) ≥ rsatmj (I, π1, t2) and

rsatmj (I, π2, t1) ≤ rsatmj (I, π2, t2) > 0.

Thanks to this lemma, using a similar line of reasoning as
in Proposition 4, we can show that for two types we can find
a solution that converges to equal relative satisfaction.
Theorem 7. Assume that I is an∞-PPB-instance with non-
empty knapsack ballots such that there are only two types and
aB? such that bj ≤ B? for all rounds j. Then, there is a non-
empty feasible solution for I that converges to equal relative
satisfaction.

It is important to mention that the proofs of Lemma 6 and
that of Theorem 7 are both constructive, in the sense that they
show how to compute the relevant solutions. However, this
construction does not guarantee the solution to be exhaustive.
To achieve this, an additional ballot restriction is necessary.

Corollary 8. Consider an∞-PPB instance I that satisfies all
the conditions of Theorem 7. Then, there exists a non-empty
feasible solution π = (π1, π2, . . . ) for I that (i) converges to
equal relative satisfaction and (ii) such that for each round j
there is an agent i with Aj(i) ⊆ πj . In particular, if all
ballots are exhaustive, then every budget allocation in π is
exhaustive.

Whether Theorem 7 and Corollary 8 can be extended to
three and more types remains an important open question.

6 Conclusion
In this paper, we have introduced a model of participa-
tory budgeting (called perpetual participatory budgeting) that
takes into account the temporal component of a PB pro-
cess. We have further defined a theory of fairness for this
model by introducing several fairness criteria. We consid-
ered both egalitarian concepts based on voters’ (relative) sat-
isfaction and a form of proportionality based on shares. For
corresponding axiomatic properties, we studied whether (and
when) we can guarantee these to hold as well as the compu-
tational complexity of verifying them.

We can conclude that taking the long-term viewpoint al-
lows us to approximate forms of fairness that cannot be ob-
tained in single-round PB instances. This was already visible
in our starting example in Section 2. Beyond that, we have
established three strong fairness concepts that required a thor-
ough analysis to judge their applicability. On the one hand,
we have seen that they cannot be guaranteed in general. On
the other hand, and we have identified special cases where
some of these strong are guaranteed to hold.

Several research directions can be pursued within our pro-
posed framework. For instance, it would be interesting to
look for natural PB procedures that compute solutions satisfy-
ing (or approximating) our fairness criteria. In the light recent
works (e.g., [Hershkowitz et al., 2021]), a relevant question
concerns the price of fairness, i.e., how much the satisfaction
has to be reduced in order to achieve fairness. The fairness
criteria we introduced may not be compatible with efficiency
notions such as Pareto-optimality. Although the tension be-
tween fairness and efficiency is well-known (see, e.g., [Peters
et al., 2020]), it would be interesting to study the combination
of fairness and efficiency criteria in our setting. Moreover, PB
generalizes multi-winner voting in a way that makes it closer
to the fair division of indivisible items [Bouveret et al., 2016].
This linked was already hinted in Example 5 as applying “up-
to-one project” criteria would have made the solution fair. It
would then be interesting to investigate if and how fairness
criteria from fair division (for instance envy-freeness or EF1)
could be successfully adapted and applied to PB. Finally, by
considering real-world data of repeated PB referenda one can
analyze the possible gains of taking a long-term perspective
as we propose here.

Acknowledgements
This work was supported by the Austrian Science Fund
(FWF), project P31890.



References
[Aziz and Shah, 2020] Haris Aziz and Nisarg Shah. Partic-

ipatory budgeting: Models and approaches. In Tamás
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A Proofs
For the proofs of Propositions 1 and 2, the reductions are done
for a single round hence no solution is given in the input.

Proof of Proposition 1
Proof. Membership in NP is clear, the certificate being
the solution itself. First, we will prove the hardness of
EQUAL-SATISFACTION. We will reduce from the following
strongly NP-hard problem [Garey and Johnson, 1979; Schae-
fer, 1978].

ONE-IN-THREE 3-SAT

Input: A propositional formula ϕ in conjunctive normal
form with exactly three literals per clause (3-CNF).

Question: Is there a truth assignment α for ϕ so that each
clause in ϕ has exactly one literal set to true?

Consider a 3-CNF formula ϕ. Denote by X the set of
propositional variables appearing in ϕ and by C the set of
clauses of ϕ. We construct a 1-PPB instance I = (I1)
where I1 = 〈P, b, A〉 as follows. The set of projects is
P =

⋃
x∈X {px, p¬x}, they all have cost 1. For each proposi-

tional variable x ∈ X , there is an agent ix approving of both
px and p¬x. Moreover, for each clause c ∈ C, there is an
agent ic approving of the three projects corresponding to the
literals in c. Every agent belongs to a unique type and is the
only one belonging to that type. Finally, the budget limit is
b = |X |. This reduction can clearly be done in polynomial.

First, we show that there exists a truth assignment for ϕ
that sets exactly one literal to true in every clause of ϕ if
there exists an non-empty and feasible solution π for I that
provides equal-satisfaction. Indeed, since π has to be non-
empty, at least one agent ix will have satisfaction 1. From
equal-satisfaction, this implies that every agent should have
at least satisfaction 1. Note that the approval ballots of the
agents in {ix | x ∈ X} are all disjoint. Since the budget
limit is b = |X |, equal satisfaction in I is equivalent to ev-
ery agent having satisfaction 1. Moreover, reaching satisfac-
tion 1 for every agent is equivalent to selecting exactly one
project among px and p¬x for every x ∈ X , and exactly one
project among the one corresponding to the literals in c for
all c ∈ C. Call π such a budget allocation. Observe that for
π to be feasible, it should be the case that the projects se-
lected for the “clause agents” should be the same as the ones
selected for the “variable agents”.4 Consider then the truth
assignment T that sets a propositional variable x ∈ X to true
(resp. false) if and only if px (resp. p¬x) has been selected
in π. By construction T is a suitable truth assignment for the
ONE-IN-THREE 3-SAT problem.

Now, we show that if there exists a truth assignment T for
ϕ that sets exactly one literal to true in every clause of ϕ then
there exists an non-empty and feasible solution π for I that
provides equal-satisfaction. Let

π = {px | x ∈ T} ∪ {p¬x | x 6∈ T}.

4Note that since c(π) = b, π is trivially exhaustive. This will be
used to prove Corollary 9.

As T is a truth assignment each variable is either true or false,
hence we have c(π) = |X | and each “variable agent” has sat-
isfaction 1. Moreover, exactly one literal must be set to true
in every clause, therefore each “clause agent” has satisfaction
1. Hence, π is an exhaustive allocation that satisfies equal-
satisfaction.

The reduction for EQUAL-RELATIVE SATISFACTION is
similar, but we need to add an additional project with cost
|X | that is approved by all “variable voters”.

Membership in NP is clear, the certificate being the solu-
tion itself. We show hardness via a reduction from ONE-IN-
THREE-3-SAT. Consider a 3-CNF formula ϕ.

Denote by X the set of propositional variables appearing
in ϕ and by C the set of clauses of ϕ. We construct a 1-PPB
instance I = (I1) where I1 = 〈P, b, A〉 as follows. The
set of projects is P =

⋃
x∈X {px, p¬x} ∪ {p∗}. All projects

except p∗ have cost 1, p∗ has cost |X |. For each propositional
variable x ∈ X , there is an agent ix approving of p∗ and of
both px and p¬x. Moreover, for each clause c ∈ C, there is an
agent ic approving of the three projects corresponding to the
literals in c. Every agent belongs to a unique type and is the
only one belonging to that type. Finally, the budget limit is
b = |X |. This reduction can clearly be done in polynomial.

First, we show that there exists a truth assignment forϕ that
sets exactly one literal to true in every clause of ϕ if there ex-
ists an non-empty and feasible solution π for I that provides
equal relative satisfaction. Indeed, since π has to be non-
empty, at least one agent ix will have relative satisfaction at
least 1/3. Because of equal relative satisfaction, this implies
that every agent should have at least relative satisfaction 1/3.
We observe that this implies that p∗ is not in π as {p∗} is the
only feasible solution that contains p∗ and all “clause agents”
have 0 relative satisfaction if {p∗} is selected. Note that the
approval ballots of the agents in {ix | x ∈ X} are all disjoint.
Since the budget limit is b = |X |, equal relative satisfaction in
I is equivalent to every agent having relative satisfaction 1/3.
Moreover, reaching satisfaction 1/3 for every agent is equiv-
alent to selecting exactly one project among px and p¬x for
every x ∈ X , and exactly one project among the one corre-
sponding to the literals in c for all c ∈ C. Call π such a budget
allocation. Observe that for π to be feasible, it should be the
case that the projects selected for the “clause agents” should
be the same as the ones selected for the “variable agents”. 5

Consider then the truth assignment T that sets a propositional
variable x ∈ X to true (resp. false) if and only if px (resp.
p¬x) has been selected in π. It is clear that T is a suitable
truth assignment for the ONE-IN-THREE 3-SAT problem.

Now, we show that if there exists a truth assignment T for
ϕ that sets exactly one literal to true in every clause of ϕ then
there exists an non-empty and feasible solution π for I that
provides equal relative satisfaction. Let

π = {px | x ∈ T} ∪ {p¬x | x 6∈ T}.

As T is a truth assignment each variable is either true or false,
hence we have c(π) = |X | and each “variable agent” has
relative satisfaction 1/3. Moreover, exactly one literal must be

5Note that since c(π) = b, π is trivially exhaustive. This will be
used to prove Corollary 9.
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set to true in every clause, therefore each “clause agent” has
relative satisfaction 1/3. Hence, π is an exhaustive allocation
that satisfies equal-relative-satisfaction.

Proof of Proposition 2
Proof. We show the NP-hardness of EQUAL-SATISFACTION
via a reduction from the following (weakly) NP-hard problem
[Karp, 1972; Garey and Johnson, 1979]

SUBSET SUM

Input: A finite set Z ⊆ (Z \ {0}).
Question: Is there a non-empty Z ′ ⊆ Z such that∑

z∈Z′ z = 0?

Given a set Z ⊂ Z, we construct the following 1-PPB in-
stance I = (I1) where I1 = 〈P, b, A〉 with two agents 1 and
2, both belonging to a different type 1 ∈ t+ and 2 ∈ t−.
For every z ∈ Z, there is a corresponding project pz ∈ P
with cost |z|. Agent 1 approves of pz if and only z > 0.
Agent 2 approves of pz if and only z < 0. The budget limit
is b =

∑
z∈Z z.

Then, we claim that for every Z1 ⊂ Z we have
∑
z∈Z1

z =

0 if and only if the solution defined by π = {pz | z ∈ Z1}
satisfies equal-satisfaction. Indeed we have

∑
z∈Z1

z = 0 if
and only if

sat1(I,π, t+) =
∑
z∈Z1
z>0

z =
∑
z∈Z1
z<0

z = sat1(I,π, t−)

Therefore, there is a Z1 ⊂ Z with
∑
z∈Z1

z = 0 if and only
if there is a π that satisfies equal-satisfaction.

We observe that in the reduction above the ballots of both
voters are disjoint. Therefore, share and satisfaction coin-
cide in the instance. Hence, the same reduction also shows
that EQUAL-SHARE is NP-complete even if we have only two
voters.

Proof that EQUAL-F stays hard with an additional
exhaustiveness condition

EXHAUSTIVE EQUAL-F

Input: A k-PPB instance I = (I1, . . . , Ik) and a solution
π = (π1, . . . , πk−1).

Question: Is there an exhaustive and feasible budget allocation
πk for Ik such that (π1, . . . , πk−1, πk) provides
equal-F at round k?

Corollary 9. The EXHAUSTIVE EQUAL-SATISFACTION and
EXHAUSTIVE EQUAL-RELATIVE SATISFACTION problems
are strongly NP-complete even if there is only one round.

Proof. We observe that in the reductions in the proof of
Proposition 1 any solution that satisfies equal-satisfaction or
equal-relative satisfaction must also be exhaustive. Hence
the reductions also directly prove that hardness of EXHAUS-
TIVE EQUAL-SATISFACTION and EXHAUSTIVE EQUAL-
RELATIVE SATISFACTION.

Proposition 10. The EXHAUSTIVE EQUAL-SATISFACTION
and EXHAUSTIVE EQUAL-SHARE problems are weakly NP-
complete even if there is only one round and there are two
agents.

It is straightforward to adapt the proof of Proposition 2:

Proof. We show the NP-hardness of EXHAUSTIVE EQUAL-
SATISFACTION and EXHAUSTIVE EQUAL-SHARE at the
same time via a reduction from SUBSET SUM. Given a set
Z ⊂ Z, we construct the following 1-PPB instance I = (I1)
where I1 = 〈P, b, A〉 with two agents 1 and 2, both belong-
ing to a different type 1 ∈ t+ and 2 ∈ t−. The budget
limit is b =

∑
z∈Z z. For every z ∈ Z, there is a corre-

sponding project pz ∈ P with cost |z|. Agent 1 approves of
pz if and only z > 0. Agent 2 approves of pz if and only
z < 0. Furthermore, there are b−min{|z| | z ∈ Z} projects
p∗1, . . . , p

∗
b−min{|z||z∈Z} with cost 1 that are approved by both

voters.
First, assume there exists a non-empty Z ′ ⊆ Z such that∑
z∈Z′ z = 0 and let

π = {pz | z ∈ Z ′} ∪ {p∗1, . . . , p∗b−∑z∈Z′ |z|
}

Then, π is exhaustive by construction and we have

sat1(I,π, t+) = (
∑
z∈Z′
z>0

z) + (b−
∑
z∈Z′
|z|)

= (
∑
z∈Z′
z<0

z) + (b−
∑
z∈Z′
|z|) = sat1(I,π, t−) (1)

and

share1(I,π, t+) = (
∑
z∈Z′
z>0

z) +
1

2
(b−

∑
z∈Z′
|z|)

= (
∑
z∈Z′
z<0

z) +
1

2
(b−

∑
z∈Z′
|z|) = share1(I,π, t−) (2)

Hence, π is an exhaustive allocation that satisfies equal-
satisfaction and equal-share.

Now assume π is an exhaustive allocation that satisfies
equal-satisfaction or equal-share. Let Z ′ = {z | pz ∈ π}.
Z ′ must be non-empty because π is exhaustive and, by con-
struction, any exhaustive solution must contain at least one
project of the form pz . Furthermore, it follows for equation
(1) resp. (2) that

∑
z∈Z′ z = 0.

Proof of Proposition 3
Proof. We show that SATISFACTION-GINI-OPTIMALITY is
co-NP-complete by showing that its co-problem, i.e., check-
ing whether a solution is not Gini-optimal is NP-complete.
It is clear that this problem is in NP, as we can just guess a
non-empty, feasible solution and check if it has a lower Gini
coefficient than π in polynomial time.

We show that the co-problem is NP-hard by a reduction
from SUBSET-SUM. Let Z = {z1, . . . , zk} be a SUBSET-
SUM instance. We construct a CO-SATISFACTION-GINI-
OPTIMALITY instance as follows: There are two agents 1 and
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2, with the type t+ and t− respectively. We only have one
round. For every element zi ∈ Z there is a project pi with
c(pi) = 4|zi|. Furthermore, there are two projects p+ and p−
with c(p+) = 8

∑
i≤k |zi| and c(p−) = 8

∑
i≤k |zi| + 1.

We have P = {p1, . . . , pk, p+, p−}. The budget is b =∑
p∈P c(p), i.e., in principle all projects could be funded. The

approvals are given by

A1 = {pi | zi ≥ 0} ∪ {p+}
and

A2 = {pi | zi < 0} ∪ {p−}.
Finally, we ask whether the feasible allocation {p+, p−} is
Gini-optimal.

We claim that there is a non-empty, feasible allocation that
Gini-dominates {p+, p−} if and only if Z is a positive in-
stance of SUBSET-SUM.

First assume Z is a positive instance of SUBSET-SUM and
let Z ′ ⊆ Z be a set such that

∑
z∈Z′ z = 0. We claim that

the solution π = {pi | zi ∈ Z ′} Gini-dominates {p+, p−}.
On the one hand, we have

gini({p+, p−}) = 1− 3c(p+) + c(p−)

4 c(p+)+c(p−)
2

=

1− 3c(p+) + c(p−)

2c(p+) + 2c(p−)
= 1−

24
∑
i≤k |zi|+ 1

24
∑
i≤k |zi|+ 2

which is clearly larger than 0 because. On the other hand∑
pi∈A1∩π

c(pi)−
∑

pi∈A2∩π
c(pi) = 4

∑
z∈Z′

s = 0

and hence gini(π) = 0.
Now assume there is a non-empty, feasible allocation π

that Gini-dominates {p+, p−}. We claim that∑
pi∈A1∩π

c(pi) =
∑

pi∈A2∩π
c(pi)

Assume otherwise there is no such solution. By construction,
if the difference in share between 1 and 2 is not 0 then it must
be 3, as the difference without p+ and p− must be a multiple
of 4. In the best case, this difference can be achieved with
a solution π that funds all projects. In that case, we would
have: ∑

pi∈A1∩π
c(pi) = 2

∑
i≤k

|zi|+ 2 + c(p+)∑
pi∈A2∩π

c(pi) = 2
∑
i≤k

|zi| − 2 + c(p−)

Then,

gini(π) =

1−
3(2
∑
i≤k |zi| − 2 + c(p−)) + 2

∑
i≤k |zi|+ 2 + c(p+)

2(2
∑
i≤k |zi| − 2 + c(p−) + 2

∑
i≤k |zi|+ 2 + c(p+))

=

1−
30
∑
i≤k |zi| − 3 + 10

∑
i≤k |zi|+ 2

20
∑
i≤k |zi| − 2 + 20

∑
i≤k |zi|+ 4)

=

1−
40
∑
i≤k |zi| − 1

40
∑
i≤k |zi|+ 2

Now, to compare the two, we compute

24
∑
i≤k |zi|+ 1

24
∑
i≤k |zi|+ 2

−
40
∑
i≤k |zi| − 1

40
∑
i≤k |zi|+ 2

=

32
∑
i≤k |zi|+ 4

(24
∑
i≤k |zi|+ 2)(40

∑
i≤k |zi| − 2)

> 0

Therefore, gini(π) > gini({p+, p−}), a contradiction.
This means if there is a solution π that Gini-dominates

{p+, p−}, then ∑
pi∈A1∩π

c(pi) =
∑

pi∈A2∩π
c(pi).

This means p+, p− 6∈ π, which implies that Z ′ := {zi | pi ∈
π} is a solution of the SUBSET-SUM instance.

We observe that in the reduction above the ballots of both
voters are disjoint. Therefore, share and satisfaction coin-
cide in the instance. Hence, the same reduction also shows
that SHARE-GINI-OPTIMALITY is co-NP-complete even if
we have only two voters.

In order to show that RELATIVE-SATISFACTION-GINI-
OPTIMALITY is co-NP complete we have to modify the re-
duction slightly. We have to add two additional project p∗1
and p∗2 such that c(p∗1) = c(p∗2) = b (the budget is still
b =

∑
p∈P\{p∗1 ,p∗2}

c(p)). We assume that agent 1 approves
project p∗1 and agent 2 approves project p∗1. We observe that
then the following holds:

rsat1(I,π, t+) =

sat1(I,π, t+)

max{c(A) | A ⊆ A1(1) and c(A) ≤ b}
=

sat1(I,π, t+)

c(p∗1)
=

sat1(I,π, t+)

b
.

The same holds for t−. This implies that any bundle that does
not contain p∗1 and p∗2 is relative-satisfaction-Gini-optimal in
the new instance if and only if the bundle is satisfaction-
Gini-optimal in the original instance. We claim that, fur-
thermore, a bundle that contains either p∗1 or p∗2 can not be
relative-satisfaction-Gini-optimal. By construction, the only
feasible bundle that contains p∗1 (resp. p∗2) is {p∗1} (resp.
{p∗2}). Hence, the modified reduction shows that RELATIVE-
SATISFACTION-GINI-OPTIMALITY is co-NP-complete.

Proof that F-GINI-OPTIMALITY stays hard with an
additional exhaustiveness condition

Exhaustive F -GINI-OPTIMALITY

Input: A k-PPB instance I = (I1, . . . , Ik) and an exhaustive
solution π = (π1, . . . , πk).

Question: Is π Gini-optimal in round k w.r.t. all exhaustive,
feasible solutions?

Proposition 11. EXHAUSTIVE SATISFACTION-
GINI-OPTIMALITY and EXHAUSTIVE RELATIVE-
SATISFACTION-GINI-OPTIMALITY are weakly co-NP-
complete even if there is only one round and two agents.

10



Proof. We show that the problem is co-NP-complete by
showing that its co-problem, i.e., checking whether a solution
is not Gini-optimal in round k is NP-complete. This problem
is in NP, as we can guess an exhaustive solution and check
if it has a smaller Gini coefficient in round k than π in poly-
nomial time. In the following, we will say that a solution
π Gini-dominates another solution π′ if it has a lower Gini
coefficient in round k.

We show NP-hardness via a reduction from SUBSET SUM.
Consider an instance of the SUBSET SUM problem Z ⊆ Z
and let ζ =

∑
z∈Z |z|. We will now construct an instance

of EXHAUSTIVE SATISFACTION-GINI-OPTIMALITY. First,
consider the 1-PPB instance I = (I1) where I1 = 〈P, b, A〉.
There are two agents 1 and 2 of type t+ and t− respectively.
For every z ∈ Z there is a project pz with c(pz) = 4|z|. There
is a additional project p+ with c(p+) = 1. Let P = {pz | z ∈
Z} ∪ {p+, p−}. The budget limit is then b = 4ζ. There are
then b − 1 additional projects P ∗ = {p∗1, . . . , p∗b−1}, all of
cost 1. The ballots are given by

A1(1) = {pz | z ∈ Z and z > 0} ∪ {p+} ∪ P ∗

A1(2) = {pz | z ∈ Z and z < 0} ∪ P ∗.

Finally, the second part of the EXHAUSTIVE SATISFACTION-
GINI-OPTIMALITY instance, the solution π, consists of p+
together with all projects in P ∗, i.e.,

π = {p+} ∪ P ∗.

Clearly c(π) = b, hence π is exhaustive. Further, observe
that

sat(I,π, t+) = b,

sat(I,π, t−) = b− 1.

We claim that there is an exhaustive solution that Gini-
dominates π if and only if Z is a positive instance of the
SUBSET SUM problem. First assume Z is indeed a positive
instance. Let then Z ′ ⊆ Z be a set such that

∑
z∈Z′ z = 0

and let P ′ = {pz | z ∈ Z ′}. We claim that the solution
π′ = (π′) where

π′ = P ′ ∪
{
p∗1, . . . p

∗
b−c(P ′)

}
is exhaustive and Gini-dominates π. As c(π′) = b, π′ clearly
is exhaustive. Now, to show that π′ Gini-dominates π con-
sider first

gini(π) = 1− 3(b− 1) + b

2(b− 1 + b)
= 1− 4b− 3

4b− 2

which is clearly larger than 0. On the other hand,

sat1(I,π
′, t+) =

∑
pi∈A1(1)∩π′\P∗

c(pi) +
∑

p∗i∈π′∩P∗
c(p∗i )

=
∑

pi∈A2(2)∩π′\P∗
c(pi) +

∑
p∗i∈π′∩P∗

c(p∗i ) = sat1(I,π
′, t−).

and hence gini(π′) = 0.
Now assume there is an exhaustive solution π′ = (π′) that

Gini-dominates π. First of all, observe that any exhaustive

allocation must contain at least one project from P \ P ∗, be-
cause, by construction P ∗ is not exhaustive as we could add
p+. Furthermore, by construction

sat1(I, π
′∩P ∗, t+) =

∑
p∗i∈π′∩P∗

c(p∗i ) = sat1(I, π
′∩P ∗, t−).

(3)
First, assume that the following holds

sat1(I,π
′, t+) = sat1(I,π

′, t−). (4)

We claim that π′ cannot contain p+. If π′ contains p+
sat1(I, π

′\P ∗, t+) is odd, while sat1(I, π′\P ∗, t−) is even.
Together with (3) this contradicts assumption (4). Therefore,
π′ can only contain projects in {pz | z ∈ Z} ∪ P ∗. Hence, it
follows from (3) and (4) that∑

p∈π′∩P∩A1(1)

c(p) =
∑

p∈π′∩P∩A1(2)

c(p).

Hence,
∑
z∈Z′ z = 0 for Z ′ = {z ∈ Z | pz ∈ π′} and, by

the above, we know that Z ′ 6= ∅. Z is thus a positive instance
of SUBSET SUM.

Now, assume

sat1(I,π
′, t+) 6= sat1(I,π

′, t−).

In the best case, π′ can have

sat1(I,π
′, t+) = b and sat1(I,π

′, t−) = b− 1.

as any other distribution of satisfaction must have a bigger
difference in satisfaction or a lower sum of satisfaction scores.
In both cases, the Gini coefficient would increase. This is the
same distribution of satisfaction as for π, hence gini(π′) =
gini(π) and π′ does not Gini-dominate π.

Finally, we observe that for both agents there is a feasible
solution that gives them satisfaction b. Therefore, for t ∈
{t+, t−} it holds that

rsat1(I,π, t) =
sat1(I,π, t)

b
.

This implies that a bundle is relative-satisfaction-Gini-
optimal if and only if the bundle is satisfaction-Gini-
optimal. Hence, the reduction also shows that EXHAUSTIVE-
RELATIVE-SATISFACTION-GINI-OPTIMALITY is co-NP-
complete.

Essentially the same proof also works for EXHAUSTIVE
SHARE-GINI-OPTIMALITY but some computations are dif-
ferent.
Proposition 12. EXHAUSTIVE SHARE-GINI-OPTIMALITY
is weakly co-NP-complete even if there is only one round and
two agents.

Proof. We show that the problem is co-NP-complete by
showing that its co-problem, i.e., checking whether a solu-
tion is not Gini-optimal is NP-complete. This problem is in
NP, as we can guess an exhaustive solution and check if it
Gini-dominates π in polynomial time.

We will show NP-hardness via a reduction from SUBSET
SUM. Consider an instance of the SUBSET SUM problem Z ⊆

11



Z and let ζ =
∑
z∈Z |z|. We will now construct an instance

of EXHAUSTIVE SHARE-GINI-OPTIMALITY. First, consider
the 1-PPB instance I = (I1) where I1 = 〈P, b, A〉. There
are two agents 1 and 2 of type t+ and t− respectively. For
every z ∈ Z there is a project pz with c(pz) = 4|z|. There
is a additional project p+ with c(p+) = 1. Let P = {pz |
z ∈ Z} ∪ {p+, p−}. The budget limit is then b = 4ζ. There
are then b − 1 additional projects P ∗ = {p∗1, . . . , p∗b−1}, all
of cost 1. The ballots are given by

A1(1) = {pz | z ∈ Z and z > 0} ∪ {p+} ∪ P ∗

A1(2) = {pz | z ∈ Z and z < 0} ∪ P ∗.
Finally, the second part of the EXHAUSTIVE SHARE-GINI-
OPTIMALITY instance, the solutionπ, consists of p+ together
with all projects in P ∗, i.e.,

π = {p+} ∪ P ∗.
Clearly c(π) = b, hence π is exhaustive. Further, observe
that

share1(I,π, t+) = 1 +
1

2
(b− 1) =

1

2
b+

1

2
,

share1(I,π, t−) =
1

2
b− 1

2
.

We claim that there is an exhaustive solution that Gini-
dominates π if and only if Z is a positive instance of the
SUBSET SUM problem. First assume Z is indeed a positive
instance. Let then Z ′ ⊆ Z be a set such that

∑
z∈Z′ z = 0

and let P ′ = {pz | z ∈ Z ′}. We claim that the solution
π′ = (π′) where

π′ = P ′ ∪
{
p∗1, . . . p

∗
b−c(P ′)

}
is exhaustive and Gini-dominates π. As c(π′) = b, π′ clearly
is exhaustive. Now, to show that π′ Gini-dominates π con-
sider first

gini(π) = 1−
3( 12b−

1
2 ) +

1
2b+

1
2

2( 12b−
1
2 + 1

2b+
1
2 )

= 1− 2b− 1

2b

which is clearly larger than 0. On the other hand,

share1(I,π
′, t+) =∑

pi∈A1(1)∩π′\P∗
c(pi) +

1

2

∑
p∗i∈π′∩P∗

c(p∗i ) =

∑
pi∈A2(2)∩π′\P∗

c(pi) +
1

2

∑
p∗i∈π′∩P∗

c(p∗i ) =

share1(I,π
′, t−).

and hence gini(π′) = 0.
Now assume there is an exhaustive solution π′ = (π′) that

Gini-dominates π. First of all, observe that any exhaustive
allocation must contain at least one project from P \ P ∗, be-
cause, by construction P ∗ is not exhaustive as we could add
p+. Furthermore, by construction

share1(I, π
′ ∩ P ∗, t+) =

1

2

∑
p∗i∈π′∩P∗

c(p∗i ) =

share1(I, π
′ ∩ P ∗, t−). (5)

First, assume that the following holds

share1(I,π
′, t+) = share1(I,π

′, t−). (6)

We claim that π′ cannot contain p+. If π′ contains p+
share1(I, π

′ \ P ∗, t+) is odd, while share1(I, π
′ \ P ∗, t−)

is even. Together with (3) this contradicts assumption (4).
Therefore, π′ can only contain projects in {pz | z ∈ Z}∪P ∗.
Hence, it follows from (5) and (6) that∑

p∈π′∩P∩A1(1)

c(p) =
∑

p∈π′∩P∩A1(2)

c(p).

Hence,
∑
z∈Z′ z = 0 for Z ′ = {z ∈ Z | pz ∈ π′} and, by

the above, we know that Z ′ 6= ∅. Z is thus a positive instance
of SUBSET SUM.

Now, assume

share1(I,π
′, t+) 6= share1(I,π

′, t−).

Then |share1(I,π′, t+)− share1(I,π
′, t−)|must be at least

one, as there is no project with cost less than one. Further, we
know share1(I,π

′, t+) + share1(I,π
′, t−) = b. Hence, the

best case for π′ is

share1(I,π
′, t+) =

1

2
b+

1

2

and
share1(I,π

′, t−) =
1

2
b− 1

2
.

This is the same distribution of satisfaction as for π, hence
gini(π′) = gini(π) and π′ does not Gini-dominate π.

Proof of Proposition 4
Proof. Call the agents 1 and 2 and assume they belong to
types t1 and t2 respectively (as equal-satisfaction is trivially
satisfied if there is only one type). We claim that there exists
a solution π such that for every round j, we can guarantee:

satj(I,π, t1)−B? ≤ satj(I,π, t2)

≤ satj(I,π, t1) +B?.

Let us prove the claim by induction. For the first round, it
is clear that whichever non-empty budget allocation has been
chosen, we have 0 ≤ sat1(I,π, t) ≤ B? for t ∈ {t1, t2}.
The claim thus holds.

Now assume the claim holds for round j − 1. W.l.o.g. as-
sume satj−1(I,π, t2) ≤ satj−1(I,π, t1). Let p be a project
approved by 2 such that c(p) ≤ bj . Then, we set πj = {p}.
We can distinguish two cases: First assume 1 also approves p.
Then, the claim follows directly from the induction hypothe-
sis. Now, assume 1 does not approve p. Then

satj(I,π, t1)−B? = satj−1(I,π, t1)−B?

≤ satj−1(I,π, t2) < satj(I,π, t2).

Furthermore, we assumed

satj−1(I,π, t2) ≤ satj−1(I,π, t1) and c(p) ≤ B?,
hence

satj(I,π, t2) = satj−1(I,π, t2) + c(p)

≤ satj−1(I,π, t1) +B? = satj(I,π, t1) +B?.
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Therefore, the claim holds.
Now, we know satj(I,π, t1) + satj(I,π, t2) ≥∑j
j′=1 c(πj′). Together with the claim, this im-

plies that lim
j→+∞

(satj(I,π, t1)) = +∞ as well as

lim
j→+∞

(satj(I,π, t2)) = +∞. We observe that

lim
j→+∞

(
satj(I,π, t1) +B?

satj(I,π, t1)

)
=

lim
j→+∞

(
satj(I,π, t1)−B?

satj(I,π, t1)

)
= 1.

Therefore, the proposition follows from the following in-
equality:

satj(I,π, t1)−B?

satj(I,π, t1)
≤ satj(I,π, t2)

satj(I,π, t1)
≤

satj(I,π, t1) +B?

satj(I,π, t1)
.

Proof of Proposition 5
Proof. Assume w.l.o.g. that the agents are called 1,2 and 3.
We have to distinguish two cases: either there are two or three
types. Assume first that there are only two types t1 and t2. We
can assume that agent 1 has type t1 and agent 2 and 3 have
type t2. We claim that there exists a solution π such that for
every round j, we can guarantee:

satj(I,π, t1)−B? ≤ satj(I,π, t2)

≤ satj(I,π, t1) +B?. (7)

Convergence to equal-satisfaction follows from this equation
analogues to Proposition 4.

Let us prove the claim by induction. For the first round, it
is clear that whichever non-empty budget allocation has been
chosen, we have 0 ≤ sat1(I,π, t) ≤ B? for t ∈ {t1, t2}.
The claim thus holds.

Now assume the claim holds for round j − 1. Assume first
that satj−1(I,π, t1) ≤ satj−1(I,π, t2). Then, we can just
set πj = Aj(1). This guarantees

satmj (I,π, t2) ≤ satmj (I,π, t1) ≤ B?.

Together with the induction hypothesis, this implies (7).
Now, assume satj−1(I,π, t2) ≤ satj−1(I,π, t1) If

Aj(1) = Aj(2) = Aj(3), then the difference in satisfac-
tion will not change independently of the winning allocation,
hence (7) follows from the induction hypothesis. Now as-
sume it is not that case that Aj(1) = Aj(2) = Aj(3) holds.
As all ballots are exhaustive we cannot have Aj(i) ( Aj(i

∗)
for i, i∗ ∈ {1, 2, 3}, therefore there must be a project p that
is not approved by all three agents. We claim that, moreover,
there is a project p∗ in Aj(2)∪Aj(3) that is not approved by
1. Assume otherwise. Then p must be approved by 1 but not
approved by either 2 or 3. We assume w.l.o.g. that 2 does not
approve p. This implies that Aj(1)∩Aj(2) is not exhaustive.
Therefore Aj(1)∩Aj(2) ( Aj(2). In other words, there is a

project p∗ as desired that is approved by 2 but not by 1. Now
let π = {p∗}. By definition, we have

0 = satmj (I,π, t1) ≤ satmj j(I,π, t2) ≤ B?.

Together with the induction hypothesis, this implies (7). This
concludes the case that there are only two types.

Now, assume that there are three types t1, t2 and t3. Fur-
ther we assume w.l.o.g. that agent i has type ti for all i ∈
{1, 2, 3}.

We claim that there exists a solution π such that for every
round j, we can guarantee for any i, i∗ ∈ {1, 2, 3}:

|satj(I,π, ti)− satj(I,π, ti∗)| ≤ 2B?. (8)

It is straightforward to check that convergence to equal-
satisfaction follows from this equation analogues to Propo-
sition 4.

Let us prove the claim by induction. For the first round, it
is clear that whichever non-empty budget allocation has been
chosen, we have 0 ≤ sat1(I,π, t) ≤ B? for t ∈ {t1, t2, t3}.
The claim thus holds.

Now assume the claim holds for round j − 1. Further as-
sume w.l.o.g. that

satj−1(I,π, t1) ≤ satj−1(I,π, t2) ≤ satj−1(I,π, t3).
(9)

We observe that the induction hypothesis implies

satj−1(I,π, t3) ≤ satj−1(I,π, t1) + 2B?.

Therefore, we must have either

satj−1(I,π, t2) ≤ satj−1(I,π, t1) +B? (10)

or
satj−1(I,π, t3) ≤ satj−1(I,π, t2) +B?. (11)

Assume first that (11) holds. Then, we set πj = Aj(1). From
this we get

satmj (I,π, t2) ≤ satmj j(I,π, t1) ≤ B?,
satmj (I,π, t3) ≤ satmj j(I,π, t1) ≤ B?.

Together with (9) this implies (8) for i = 1 and i∗ = 2, 3. It
remains to show that it also holds for i = 2 and i∗ = 3. As-
sume satmj (I,π, t2) ≤ satmj (I,π, t3), then (8) follows from
satj−1(I,π, t2) ≤ satj−1(I,π, t3) and satmj (I,π, t2) ≤
B?. So, assume satmj (I,π, t3) ≤ satmj (I,π, t2). Then (8)
follows from (11) and satmj (I,π, t2) ≤ B?.

Now assume that (10) holds. By the same argument as
above we can find a p∗ that is in Aj(2) ∪ Aj(3) but not in
Aj(1). Let πj = {p∗}. Assume first that p∗ ∈ Aj(1). Then,

satmj (I,π, t3) ≤ satmj (I,π, t2) ≤ satmj (I,π, t1) ≤ B?

together with (9) implies (8) for all i and i∗. So assume p∗ ∈
Aj(2) \ Aj(1). Then satmj (I,π, t1) = satmj (I,π, t3) = 0
and satmj j(I,π, t2) ≤ B?. This implies, together with the
induction hypothesis, (8) for i = 1 and i∗ = 3 and, together
with (9), (8) for i = 2 and i∗ = 3. Finally, satmj j(I,π, t2) ≤
B? together with (10) implies (8) for i = 1 and i∗ = 2.
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Proof of Lemma 6
Proof. Consider a round j ∈ {1, . . . , k} corresponding to
the budgeting problem Ij = 〈Pj , bj , Aj〉. We show that
there exists π ∈ A(Ij) such that 0 < rsatmj (I, π, t1) ≥
rsatmj (I, π, t2). The other direction follows by symmetry.

Given that Ij has knapsack ballots, for every agent i ∈ N ,
we haveAj(i) ∈ A(Ij). For any budget allocation π ∈ A(Ij)
and type t ∈ T , let stπ = |{i ∈ t | Aj(i) = π}| be the number
of agents of type t that approve exactly the budget allocation
π.

Let π∗ be any budget allocation such that st1π∗ 6= 0. Now, if
rsatmj (I, π∗, t1) ≥ rsatmj (I, π∗, t2) holds, the lemma holds
as well. Therefore, assume

rsatmj (I, π∗, t1) < rsatmj (I, π∗, t2). (12)

Now, observe that by definition we have

rsatmj (I, π∗, t) =
1

|t|
∑

π∈A(Ij)

stπα(π, π
∗) (13)

where α(π, π∗) is the relative overlap of π and π∗, defined by

α(π, π∗) =
c(π ∩ π∗)
c(π)

.

We observe that 0 ≤ α(π, π∗) ≤ 1 holds for all π by defini-
tion. Now, from (12) and (13) we have:

1

|t1|
∑

π∈A(Ij)

st1π α(π, π
∗) <

1

|t2|
∑

π∈A(Ij)

st2π α(π, π
∗)

⇔
∑
π∈A(Ij)

st1π α(π, π
∗)∑

π∈A(Ij)
st2π α(π, π∗)

<
|t1|
|t2|

. (14)

Now, let A1 := {π | α(π, π∗) = 1} be the set of budget
allocations π for which α(π, π∗) = 1. Then, we can write
(14) as ∑

π∈A1 st1π +
∑
π 6∈A1 st1π α(π, π

∗)∑
π∈A1 s

t2
π +

∑
π 6∈A1 s

t2
π α(π, π∗)

<
|t1|
|t2|

.

Now, for this to hold, we must either have∑
π∈A1 st1π∑
π∈A1 s

t2
π

<
|t1|
|t2|

or there must be sufficiently many budget allocations π 6∈ A1

with st1π
s
t2
π
< |t1|
|t2| to make the inequality true. As we know that

α(π, π∗) < 1, dropping α(π, π∗) only increases the influence
of these projects. Therefore, in both cases, we can find a set of
budget allocations A1 ⊆ A ⊆ A(Ij) such that the following
holds: ∑

π∈A s
t1
π∑

π∈A s
t2
π

<
|t1|
|t2|

. (15)

On the other hand, since for any type t, we have |t| =∑
π∈A(Ij)

stπ , (15) can be rewritten∑
π∈A s

t1
π∑

π∈A s
t2
π

<

∑
π∈A(Ij)

st1π∑
π∈A(Ij)

st2π
.

As
∑
π∈A s

t2
π ≤

∑
π∈A(Ij)

st2π holds by definition, we must
have

∑
π∈A s

t1
π <

∑
π∈A(Ij)

st1π . Thus, there must exists a
π0 ∈ A(Ij) \ A such that st1π0

6= 0. Since π0 /∈ A, we have
α(π0, π

∗) < 1, which implies π0 6= π∗.
Consider then π∗′ = π∗\π0. Since α(π0, π∗) < 1, π∗′ 6= ∅

and rsatm(I, π∗′, i) > 0 for at least one agent i of type t1
(one such that Aj(i) = π0 for instance, which must exist as
st1π0
6= 0). Therefore, if

rsatmj (I, π∗′, t1) ≥ rsatmj (I, π∗′, t2)

holds, then the lemma holds. Hence, we assume

rsatmj (I, π∗′, t1) < rsatmj (I, π∗′, t2).

Then, we have

rsatmj (I, π∗, t1) + rsatmj (I, π∗′, t1) <

rsatmj (I, π∗, t2) + rsatmj (I, π∗′, t2). (16)

It follows from (13) and (16) as before that∑
π∈A(Ij)

st1π (α(π, π
∗) + α(π, π∗′))∑

π∈A(Ij)
st2π (α(π, π∗) + α(π, π∗′))

<
|t1|
|t2|

.

Now, because π∗ and π∗′ are disjoint, we know all factors
α(π, π∗) + α(π, π∗′) are smaller or equal 1. Hence we can
conclude as above that there must be a set of budget alloca-
tions A′ ⊆ A(Ij) such that α(π, π∗)+α(π, π∗′) = 1 implies
π ∈ A′ and the following holds∑

π∈A′ s
t1
π∑

π∈A′ s
t2
π

<
|t1|
|t2|

. (17)

It follows again from |t| =
∑
π∈A(Ij)

stπ and (17) that there
must be another budget allocation π1 such that st1π1

> 0 and
α(π1, π

∗) + α(π1, π
∗′) < 1, which implies π1 /∈ {π∗, π∗′}.

Then, as before, we have rsatmj (I, π1 \ (π∗∪π∗′), i) > 0 for
some agent i of type t1 and hence if

rsatmj (I, π1 \ (π∗∪π∗′), t1) ≥ rsatmj (I, π1 \ (π∗∪π∗′), t2)

then the lemma holds. Otherwise, we can iterate the construc-
tion.

As there are only finitely many allocations, this construc-
tion must lead, after finitely many steps, to an allocation π?
such that 0 < rsatmj (I, π?, t1) ≥ rsatmj (I, π?, t2).

Proof of Theorem 7
Proof. Let us call the two types t1 and t2. We claim that
there exists a solution π such that for every round j, we can
guarantee:

rsatj(I,π, t1)− 1 ≤ rsatj(I,π, t2) ≤ rsatj(I,π, t1) + 1.

We will prove the claim by induction. For the first round,
we clearly have 0 ≤ rsatj(I,π, t) ≤ 1 for t ∈ {t1, t2},
hence the claim holds. Now assume the claim holds for round
j − 1. W.l.o.g. assume

rsatj−1(I,π, t2) ≤ rsatj−1(I,π, t1). (18)

14



By Lemma 6, we know that there is a feasible bud-
get allocation π for round j such that rsatmj (I, π, t1) ≤
rsatmj (I, π, t2). Assume that πj = π. Then, for both types
t ∈ {t1, t2}, we have

rsatj(I,π, t) = rsatj−1(I,π, t) + rsatmj (I, πj , t)

Since rsatmj (I, πj , t1) ≤ rsatmj (I, πj , t2), and by the induc-
tion hypothesis, it follows that

rsatj(I,π, t1)− 1 ≤ rsatj(I,π, t2).

On the other hand, from (18) and the fact that
rsatmj (I, πj , t2) ≤ 1 holds by definition, we obtain

rsatj(I,π, t2) ≤ rsatj(I,π, t1) + 1.

Now, in each round, we know from Lemma 6 that we can
always select a budget allocation that improves the relative
satisfaction of type t (t being the type with the lowest relative
satisfaction) by at least 1/(B?|t|). Hence, the relative satis-
faction of both types goes to infinity, while the difference is
always less than 1. This concludes the proof as it implies that
π converges to equal relative satisfaction.

Proof of Corollary 8
Proof. The idea of the proof is, that we can find two budget-
ing allocations π1 and π2 as described in Lemma 6 and such
that there are two agents i1, i2 ∈ N with Aj(i1) \ π1 = ∅
and Aj(i2) \ π2 = ∅ by applying Lemma 6 several times.
Let Ij = 〈Pj , bj , Aj〉 be the budgeting problem in round j.
We claim that, under the given assumptions, in every round
j there exist two feasible budget allocations π1, π2 ∈ A(Ij)
such that

0 < rsatmj (I, π1, t1) ≥ rsatmj (I, π1, t2),

rsatmj (I, π2, t1) ≤ rsatmj (I, π2, t2) > 0,

and for which there are two agents i1, i2 ∈ N with Aj(i1) \
π1 = ∅ and Aj(i2) \ π2 = ∅. We will only prove the exis-
tence of π1, that of π2 follows by symmetry. Indeed, from
Lemma 6, we know that there exists π1

1 ∈ A(Ij), such that

0 < rsatmj (I, π1
1 , t1) ≥ rsatmj (I, π1

1 , t2).

If there is no agent i ∈ N such that Aj(i) \ π1
1 = ∅, we

can consider the budgeting problem I1j =
〈
P1
j , bj , A

1
j

〉
where

P1
j = Pj \ π1

1 and for all agents i ∈ N we have A1
j (i) =

Aj(i) \ π1
1 . By assumption, A1

j (i) 6= ∅ for all agents i ∈
N . Therefore, I1j is a budgeting problem with two types and
non-empty knapsack ballots and we can apply Lemma 6 once
again, to obtain a budget allocation π2

1 ∈ A(I1j ). such that

0 < rsatmj (I, π2
1 , t1) ≥ rsatmj (I, π2

1 , t2).

By definition, we know that π1
1 ∩ π2

1 = ∅, therefore we have

0 < rsatmj (I, π1
1 ∪ π2

1 , t1) = rsatmj (I, π1
1 , t1)+

rsatmj (I, π2
1 , t1) ≥ rsatmj (I, π1

1 , t2) + rsatmj (I, π2
1 , t2)

= rsatmj (I, π1
1 ∪ π2

1 , t2).

Now, if there is no agent i such that Aj(i) \ π1
1 ∪ π2

1 = ∅, we
can apply Lemma 6 again until we have Aj(i) \ (π1

1 ∪ π2
1 ∪

. . .) = ∅ for some agent.
Finally, note that if all ballots are exhaustive, then Aj(i) \

π = ∅ can only hold for an exhaustive budget allocation π.
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