Designing Participatory Budgeting
Mechanisms Grounded in Judgment
Aggregation”

Simon Rey, Ulle Endriss, Ronald de Haan

Abstract

We introduce a new approach for designing rules for participatory budgeting (PB),
the problem of deciding on the use of public funds based directly on the views
expressed by the citizens concerned. The core idea is to embed instances of the
participatory budgeting problem into judgment aggregation, a powerful general-
purpose framework for modelling collective decision making. Taking advantage of
the possibilities offered by judgment aggregation, we enrich the familiar setting of
participatory budgeting with additional constraints, namely dependencies between
projects and quotas regarding different types of projects. We analyse the rules
obtained in both algorithmic and axiomatic terms.

1 Introduction

Participatory budgeting (PB) is an instrument intended to improve the democratic process
by allowing citizen to directly express their views regarding the use of public funds [6]. Since
its first use for municipal budget, PB has now been adopted across the world [38]. PB
proceeds in two stages. First, citizens submit project proposals, some of which are shortlisted.
Then they vote on which of the shortlisted projects to fund, given the limitations set by the
budget available. In this paper we introduce a new approach for designing voting rules for
this second stage. The central idea is to embed PB into judgment aggregation (JA), a highly
expressive framework for collective decision making that has been extensively studied in the
field of (computational) social choice [13, 31].

Most existing formal work in social choice theory regarding PB views voting on projects
as a generalisation of approval-based multiwinner voting [see, e.g., 2, 1, 39]. While this can
provide useful intuitions regarding, for instance, the type of normative desiderata we may
wish to postulate for PB, it does not allow for great flexibility when it comes to modelling
expressive forms of PB [26, 27, 35] as it requires each time to introduce a new model and to
re-prove previous results. This is why we take a complementary approach and study project
selection as a special case of the more general problem of JA. This allows us to prove general
results which will apply to any generalisation of PB that fits within our framework.

While JA is very expressive—e.g., it naturally generalises many forms of preference
aggregation and voting [10, 29, 14]—computing outcomes for JA is typically computationally
intractable [16]. The central challenge we address in this paper thus is to find ways of
implementing PB via JA in an efficient manner. To do so, the core idea we explore is to
look for tractable fragments of JA, by further developing the approach of De Haan [24]
of modelling JA problems using Boolean circuits in decomposable negation normal form
(DNNF). This allows us to model PB problems with multiple resources, dependencies between
projects, and quotas of different types of projects.

Of course, an expressive framework for modelling PB scenarios and a set of algorithmically
efficient PB rules alone are not sufficient. We also require a good understanding of whether

*This is an abridged version of a paper originally appearing in the proceedings of the 17th International
Conference on Principles of Knowledge Representation and Reasoning [37].

the rules we design are normatively adequate. We therefore provide an axiomatic analysis of
the rules we propose, focusing on the notion of exhaustiveness (ruling out any under-use of
the budget) and the monotonicity azioms proposed by Talmon and Faliszewski [39].

Related work. According to the terminology of Aziz and Shah [1], we focus on combi-
natorial PB with binary projects and approval ballots. For this framework, Aziz et al. [2]
and Talmon and Faliszewski [39] analysed several rules in both axiomatic and algorithmic
terms, proposing greedy algorithms and dynamic programming techniques. Using a different
approach, Fain et al. [19] and Freeman et al. [21] instead studied PB solutions as market
equilibria, in the spirit of the public decision making setting of Conitzer et al. [7]. Particularly
relevant to our work, Fain et al. [20] considered a general setting of public decision making
with matroid, matching, and packing constraints, allowing for great flexibility on what can
be modelled. Further generalisations of PB have been introduced: Jain et al. [26] studied
the computational complexity of PB when projects have types and utilities are defined over
the types, Patel et al. [35] focused on fairness in a similar setting, Jain et al. [27] extended
these analyses to a more general framework. Lu and Boutilier [32] considered yet another
extension of PB, where the cost of a project might depend on the number of agents choosing
it. Finally, De Haan [24] was the first to discuss the idea of embedding PB into JA.

Paper outline. We recall relevant definitions from PB and JA in Section 2 and then
introduce our central definition of an embedding of PB into JA. Section 3 is devoted to the
study of efficient embeddings for basic PB and the extensions we propose, Section 4 discusses
exhaustiveness, and Section 5 contains the remainder of our axiomatic analysis. Missing
proofs can be found in the full version of this paper [37].

2 Frameworks

In this section we recall basic definitions regarding the frameworks of participatory budgeting
(PB) and judgment aggregation (JA). We also define the main concept of this paper, namely
embeddings of PB instances into JA.

2.1 Participatory Budgeting

We mainly adopt the notation of Aziz and Shah [1]. PB is about selecting a set of projects to
be funded, given a (possibly multi-dimensional) budget limit. The set of (binary) projects is
denoted by P = {p1,...,pm}. Let R ={r1,..., 74} be a set of resources and b = (by,...,by)
a budget limit vector, with b; € R>¢ indicating the limit in terms of resource r;. The
costs of the projects are defined by a cost function ¢ : P x R — R, indicating for a
given project the cost in terms of the given resource. Slightly overloading notation, we
use ¢(p) = (e(p,71),...,¢(p,rq)) to denote the cost vector of project p. Moreover, for any
subset P C P, let ¢(P,r) = 3 cpc(p,r) and ¢(P) = > pc(p). A problem instance
I =(R,b,P,c) for PB consists of a set of resources, a budget limit vector, a set of projects,
and a cost function. Z is the set of all such instances.

A solution of a PB problem instance, called a budget allocation, is a subset of projects
A CP. A budget allocation A is said to be feasible if ¢(A) < b. For a given I € Z, the set
of all feasible budget allocations is denoted by A(I).

Before deciding which budget allocation to recommend, we consult the agents belonging
toaset N ={1,...,n}. Each agent i € N submits an approval ballot A; C P, giving rise to
a profile A = (A1,...,A,). For any given project p, its approval score under profile A is
> ien Lpea,, the number of agents approving of p. W.l.o.g., we assume that every project
has an approval score of at least 1, as projects with approval score 0 can be removed in a
pre-processing step. Finally, a PB rule is a function F : T x (2F)" — 22" \ {0} mapping

any given instance I and profile A to a nonempty set F'(I, A) C A(I) of feasible budget
allocations.! Returning a set allows us to model ties.

2.2 Judgment Aggregation

The JA framework we use is known as binary aggregation with integrity constraints [23].2

Let Lp be the set of propositional formulas over a given set P of propositional atoms,
using the usual connectives -, V, A, —, and logical constants | and T. Propositional atoms
and their negations are called literals. For any P C P, we write Lit(P) = PU{-z | x € P}
for the set of literals corresponding to P. We often use z; to denote atoms and ¢,, to denote
literals corresponding to x;, i.e., £y, € {x;,—x;}. We say that £, is positive if ¢,, = x;
and negative if £,, = —x;. A truth assignment « : P — {0,1} is a mapping indicating
for each atom its truth value. For ¢,, € Lit(P), set a(fy,) = a(x;) if ¢, is positive and
a(ly,) =1 — a(x;) otherwise. We write o = ¢ whenever « is a model of ¢.

In the context of JA, the atoms in P represent propositions an agent may either accept
or reject. A judgment J is a set J C P, indicating which propositions are accepted. Let
ext(J) = JU{—x | x € P\ J} for any given judgment J. Observe that a judgment J can be
equivalently described as the truth assignment « such that a(z) =1 if and only if x € J. In
our examples, when we do not explicitly specify some propositions, it is assumed that we
only consider judgments (and truth assignments) for which the unspecified propositions are
rejected (mapped to 0).

An integrity constraint I' € Lp is a formula used to constrain the range of admissible
judgments. A judgment J satisfies I' (written J = T'), if J, interpreted as a truth assignment,
is a model of I'. Let J(I') = {J C P | J =T}. A problem instance for JA is simply an
integrity constraint I'.

We again use N' = {1,...,n} to denote the set of agents. Each agent i € A/ provides us
with a judgment J;, resulting in a judgment profile J = (J1,...,Jy). For a profile J and a
literal £ € Lit(P), we write nj = > ien Leceat(s,) for the number of supporters of £. The
majoritarian outcome for a profile, denoted by m(-), is the set of literals supported by a
majority of agents: m(J) = {¢ € Lit(P) | n] > 2}.

A JA rule is a function F : Lp x (2P)" — 92" \ {0} taking as input an integrity constraint
I' and a judgment profile J and returning a nonempty set F(I',J) C J(I') of admissible
judgments. Observe that no assumption is made about the profile. In particular, we do
not require J; =T for any ¢ € N. We refer the reader to the literature on JA [13] for a
discussion on what makes some rules attractive or not.

Before reviewing a number of well-known concrete JA rules, let us first introduce a very
general class of such rules.

Definition 1 (Additive rules). A judgment aggregation rule F is an additive rule if there
exists a function f : (2P)n x Lit(P) — R such that, for every integrity constraint T' and

every profile J € (2P)n, we have:

F(T,J) = argmax Z f(J,0).
JEIm) Leext(J)

This class generalises both the scoring rules of Dietrich [9] and the additive majority
rules (AMRs) defined by Nehring and Pivato [34]. A scoring rule is associated with a
scoring function s : 2F x Lit(P) — R and corresponds to the additive rule with f(J,¢) =

1Observe that A(I) is never empty as the empty set is always feasible. This is not true for the extensions
discussed in Section 3.

2While this framework is most convenient for our purposes, the original framework of List and Pettit [31]
could be used as well, given that it is known that the former can be efficiently embedded into the latter [17].

JA instance I' € Lp

} Admissible

outcome
JA profile J JA rule T e 3Dy
Profil
Embedding F rohie Outcome l
equivalence translation 7
PB profile A PB rule Feasible b.udget
PB instance I € 7 allocation
Ac A(I)

Figure 1: Reduction from PB to JA

> ien 8(Ji, £). An AMR is associated with a non-decreasing gain function g : {0,...,n} = R
with g(k) < g(k’) for any k < Z < k' and is an additive rule with f(J,¢) = g(n]). We
focus on three additive rules: the Kemeny and the Slater rules as they are prominent in the
literature on JA and the leximax rule as it is similar to the greedy approval rule for PB.

e The Slater rule [33, 28] selects the admissible outcome closest to the majoritarian
outcome in terms of the number of propositions they agree on. It is the AMR associated
with the gain function g with g(z) = 1if z > % and g(z) = 0 otherwise.

e The Kemeny rule [36, 33] selects the feasible outcome that is the closest to the profile
as a whole. It is both an AMR with g(x) = = and a scoring rule with s(.J,£) = 1c cqi()-

e The leximaz rule [18, 34] favours the propositions supported by the largest majorities.
It is the AMR defined by the gain function g(z) = |P|".

Note that the three rules presented above are all majority-consistent, meaning that whenever
the majoritarian outcome is admissible, it is the unique judgement returned by the rules.

2.3 Embedding PB into JA

The aim of this paper is to design rules to solve PB problems. To this end, we want to
embed PB into JA and then use JA rules to compute budget allocations (see also Figure 1).

For a given PB instance, we introduce one proposition for each project to obtain P. So we
have a direct correspondence between budget allocations A C P and judgments J C P, and
thus also between PB profiles and JA profiles. Similarly, any JA outcome can be translated
back into the PB setting.

Definition 2 (Outcome translation). Let I = (R, b, P, ¢) be a PB instance and let T € Lp be
an integrity constraint expressed over the atoms P = {z, | p € P}. The outcome translation
7: 2P — 27 maps any judgment J € 2F to a budget allocation A= 7(J)={p € P |z, € J}.

We moreover extend the outcome translation to sets J C 2F of judgments by stipulating
that 7(J) = {r(J) | J € J}.

An embedding is a function F : 7 — Lp that takes a PB instance as input and returns
an integrity constraint (i.e., a JA instance). Given an embedding, we can now translate any
input of a PB rule into an input for a JA rule, apply the JA rule, and finally translate the
result obtained into a set of budget allocations (see Figure 1). However, to be meaningful,
the integrity constraint should express the budget constraint of the PB instance. This is
captured by the notion of correctness.

Definition 3 (Correct embedding). An embedding E : T — Lp 1is said to be correct if, for
every PB instance I € T, we have 7(J(E(I))) = A(I).

3 Efficient Embeddings

In this section we present specific embeddings of enriched PB instances into JA. Given that
the problem of computing outcomes for the JA rules defined in Section 2.2 is known to
be highly intractable [30, 15], we need to ensure that PB instances are mapped into JA
instances that permit efficient outcome determination. To this end, we first present a class
of Boolean functions (to encode integrity constraints) for which the outcome determination
can be solved efficiently.

3.1 Tractable Languages for JA

As shown by De Haan [24], computing outcomes under Kemeny and Slater can be done
efficiently when the integrity constraint is a Boolean circuit in decomposable negation normal
form (DNNF) [8]. We are going to extend this result to all additive rules.

Definition 4 (DNNF circuits). A circuit in negation normal form (NNF) is a rooted directed
acyclic graph whose leaves are labelled with T, L, x or —x, for x € P and whose internal
nodes are labelled with A or V. A DNNF circuit C' is an NNF circuit that is decomposable:
for every conjunction in C, no two conjuncts share a common propositional variable.

For a given JA rule F', we define the outcome determination problem OUTCOME(F) as follows:
given an integrity constraint I', a judgment profile J, and a subset of literals L C Lit(P); is
there a J € F(T',J) such that L C ext(J)? We can show that for any additive JA rule F we
can solve OUTCOME(F) efficiently when I' is a DNNF circuit.

Theorem 1. Let F' be an additive JA rule defined w.r.t. some polynomial-time computable
function f. Then OUTCOME(F) is polynomial-time solvable if the integrity constraint T in
the input is represented as a DNNF circuit.

This general result immediately implies tractability of outcome determination for the rules
we are interested in here and will allow us to use these rules to compute budget allocations
for PB instances embedded into JA.

Corollary 2. When the integrity constraint is represented as a DNNF' circuit, then the
problem OUTCOME(F') can be solved in polynomial time when F is either the Kemeny, the
Slater, or the leximaz rule.

3.2 DNNF Circuit Embeddings

We now move on to the description of embeddings returning integrity constraints represented
as DNNF circuits. In doing so, we follow De Haan [24] but use a slight generalisation of his
approach, allowing us to deal with PB instances with multiple resources. The basic idea is
that every V-node in the DNNF circuit will represent the choice of selecting or not a given
project. At each of these nodes, we need to keep track of the amount of resources already
used to determine whether a project can be selected without exceeding the budget.

For a project index j and a vector of used quantities per resources v € R‘io, we introduce
the V-node N (j,v), corresponding to the situation where we previously made a choice on
projects with indices 1 to j — 1, and where for these choices we used resources according
to v. These nodes N (j,v) are defined as follows.

T ifj=m+1
(zp, AN(j + 1,0 + ¢(p))))
(m2p, AN(j +1,0))

(m2p, AN(j +1,v)) V (zp, A L) otherwise

ifv+c(p;) <b

For a PB instance I = (R,b,P,c), the tractable embedding TE(I) returns the integrity
constraint defined by N(1,04), where 04 denotes the vector of length d whose components
are all equal to 0.

Let us illustrate this embedding on a simple example.

Example 1. Consider an instance I with just one resource r and projects py, p2, and p3.
The cost of the projects in r is ¢(p1) = ¢(p2) = 1 and ¢(p3) = 2 and the budget limit is b = 2.
Call x,,, xp,, and x,, the propositional atoms corresponding to p;, p2, and p3, respectively.
TE on I would construct the following DNNF circuit (which we simplified a bit):

N(1,0)

Tpg Lps

We can show that the tractable embedding does encode PB instances correctly.

Proposition 3. The tractable embedding TFE is correct, and for any given PB instance
I=(R,b,P,c) returns an integrity constraint TE(I) represented as a DNNF circuit of size
in O(m x [{c(4) | A C A(I)}).

At this point, it should be noted that the exponential factor in the size of the embedding,
namely |[{c(A4) | A C A(I)}|, is bounded from above by the sum of the budget limits for each
resource. Hence, the corresponding DNNF circuit is of size in O(m x }° % b), making it
pseudo-polynomial in the size of the PB instance.

In the remainder of this section we investigate to what extent this approach allows us to
introduce additional distributional constraints for PB.

3.3 Dependencies between Projects

We now consider the situation where some projects can only be achieved if some others are
also achieved.

Take a PB instance I = (R,b,P,c). We introduce a set of implications, Imp C Lp,
linking projects together. A set of implications is a set of propositional formulas of the form
by, — 8%, for p and p’ two projects in P with {y, and Kg;p, being the corresponding literals.
Note that this corresponds to 2-CNF formulas. Such an implication indicates that if £, is
positive (resp. negative), p can be selected (resp. not selected) only if p’ is selected (resp.
not selected) if ly,, is positive (resp. negative). A budget allocation A satisfies the set of
implications Imp if and only if the previously described semantics is satisfied.

First of all, we can show in the extended setting, finding a feasible budget allocation is a
NP-complete problem by a reduction from 2-CNF MINIMAL MODEL [4].

Proposition 4. Let I = (R,b,P,c) be a PB instance and Imp a set of implications over I.
Deciding whether there exists a feasible budget allocation for I satisfying Imp is NP-complete,
and NP-hardness holds even for a single resource.

Based on this result, we cannot hope to find an embedding into a DNNF ciruit of polynomial
size. However, we can still define an interesting parameterized embedding, in the spirit
of parameterized complexity [11]. To that end we introduce the interconnection graph
G = (P, E) of a set of implications Imp where there is an edge (p;,p;) € E between p; and
p; if and only if there exists an implication in Imp linking the two projects.

Theorem 5. Let I = (R,b,P,c) be a participatory budgeting instance and Imp a set
of implications over I. There exists a correct embedding from I and Imp to an integrity
constraint expressed as a DNNF circuit T' whose size is in O (m x |{c(A) | A C A(I)}| x 2%),
where k is the pathwidth [5] of the interconnection graph of Imp.

Let us briefly present the embedding for Theorem 5. We order the projects according to the
order in which they are introduced in an optimal path decomposition of the interconnection
graph. We introduce V-nodes N(j, v, L) where j is a project index, v € R‘io a vector of used
quantities per resource and L C Lit(P) a subset of literals. Intuitively, the set L specifies the
literals that we selected and that we should remember. If j = m + 1, then N(j,v,L) =T.
If the positive literal x;,, is implied by some literal in L w.r.t. Imp, then N(j,v,L) =
N(j+1,v+c(pj), LU{zp, }). Similarly, if the negative literal =z, is implied by some literal
in L w.r.t. Imp, then N(j,v,L) = N(j + 1,v,L U {-zp,}). Otherwise, if v 4 c(p;) < b,
then N(j,v,L) = (xp, AN[j + 1,v 4 c(p;), LU{xp,}]) V (m2p;, AN[j+ 1,0, LU {~zp,}]),
and otherwise, N(j,v,L) = (zp, A L)V (mzp, AN[j +1,v,LU{-xzp, }])
We conclude by giving an example the embedding described in the proof above.

Example 2. Consider the instance described in Example 1. Assume that, if project p;
is selected, then also project ps should be selected. The optimal path decomposition of
the interconnection graph is thus ({p1,p2}, {p2}). So we will consider the projects in the
following order: pi,p2, p3. The embedding described above would return the following DNNF
circuit (which again has been simplified a bit):

N(1,0,0)

oo ey

(ING2,0)| NG L) [NE0.0) \ Ty,

Tpg Lps

3.4 Quotas on Types of Projects

Another very natural constraint is to consider types and quotas over the projects. The idea
is that the projects belong to various types (health, education, environment to name a few)
and that some quotas over these types are to be respected by the final budget allocation (at
least two health-related projects for instance). We model this idea by defining a type system.

Formally, for a given PB instance I = (R,b,P,c), a type system is a tuple (T, Q, q, f)
where T € 22" is a set of types, each type being a subset of projects; Q = (Q,+,0,<g)
is an ordered group over which the quotas are expressed; ¢ : T — @Q? is a quota function
such that for any type t € T, q(t) = (a,b) € Q* witha <g band f: T x A(I) > Q is a
type aggregator. For t € T such that ¢(t) = (a,b), we write ¢(t)~ = a and ¢(t)* = b, which

indicate the lower and upper quota for type t respectively. A budget allocation A is feasible
if the quotas are respected—that is, if for every ¢ € T, we have q(t)~ <q f(t,4) <q q(t)*.
In the following, we provide two type aggregators that are very natural.

e Cardinality-type aggregator: the quotas express lower and upper bounds on the
number of projects selected for each type. We have Q = N, <g is the usual order on
N, and the type aggregator is f°d(¢, A) = |[ANt|.

e Cost-type aggregator: the quotas define lower bound and upper bound on the total
cost of the selected projects for each type. Here Q = R‘éo, <gq is the component-wise
order defined in the preliminaries, and the type aggregator is f¢*(¢, A) = Zpe Ant €(D)-

Using SET SPLITTING [22], we can easily show that deciding whether there is a feasible
budget allocation with a given type system is NP-complete for both of the type aggregators.

Proposition 6. Let I = (R,b,P,c) be a PB instance and (T, Q,q, f) a type system over I.
Deciding whether there exists a feasible budget allocation A is NP-complete when f is either
the cardinality or the cost-type aggregator, and NP-hardness holds even for a single resource.

We can still define a parameterized embedding for PB with types and quotas. It works for any
additive type aggregator f : T x A(I) — @, that is, any type aggregator f for which there
exists a score type function s that takes as input a project p € P and returns an element in Q
such that for every type ¢ € T and every allocation A € A(I), f(t,A) = >_,c 4 s(p). The two
type aggregators described above are both additive, with s (p) = 1 and s°*(p) = c(p).
Let I be an instance and (T, Q, g, f) a type system over I, the overlap graph of the type
system is the graph G = (T, E), where there is an edge {¢,¢'} in E if and only t N¢' # (.

Theorem 7. Let I = (R,b,P,c) be a PB instance and (T, Q,q, f) a type system where f is
an additive type aggregator defined w.r.t. the score type function s. There exists a correct
embedding for I and (T, Q,q, f) that returns an integrity constraint represented as a DNNF
circuit whose size is in O (m x |[{c(A) | A € A(I)}| x k*) where k* = maxyer([{f(t,A) | A €
A(D)Y and where k is the pathwidth of the overlap graph of (T, Q,q, f).

Note that for the cardinality and the cost type aggregators, max;c7(|{f(t,4) | A €
A(I)}|)*** is upper-bounded by |P| and [], . b, respectively.

Interestingly, the embedding is efficient in the natural case of non-overlapping types (the
overlap graph is empty). Indeed, in that case the pathwidth of the overlap graph is 0.

Corollary 8. For an additive type aggregator and non-overlapping types, the size of the
DNNF circuit returned by the previous embedding is in O (m x [{c(A) | A C A(I)}|).

4 Enforcing Exhaustiveness

Amongst the very basic requirements of a budget allocation is that of ezhaustiveness [2], or
inclusion mazimality [39]. It requires that the budget be used as much as possible.

Definition 5 (Exhaustiveness). Given a PB problem instance I = (R,b,P,c), a budget
allocation A € A(I) is said to be exhaustive if, for every project p € P\ A, there exists at
least one resource r € R such that c(AU {p},r) > b,.

For a given instance I, we denote by Agx(I) the set of feasible and exhaustive budget
allocations. An embedding E : Z — Lp is said to be exhaustive if for every I € Z, we have
T(J(E))) € Agx(I). A JA rule F is said to be exhaustive if for every correct embedding E,
every instance I € 7 and every profile A it is the case that 7(F(E(I),A)) C Agx(I).

Similarly, a PB rule is said to be exhaustive if it only returns exhaustive budget allocations.
Finally, an exhaustive embedding F is correct if Agx(I) = 7(J(E(I))), for every instance I.

Because the scenarios typically modelled using JA are rather different from PB, the
exhaustiveness axiom is not satisfied by the main JA rules. This has to do with the semantics
of rejection (of a proposition) in the context of JA.

Proposition 9. No majority-consistent JA rule is exhaustive.

Proof. Consider a correct but not exhaustive embedding F (for instance TFE). As E is not
exhaustive, there exists a PB instance I such that there is at least one admissible JA outcome
J € J(E(I)) with 7(J) ¢ Agx(I). Now consider a profile A with n agents in which [n/2]+1
agents only approve of the projects in 7(J); the other agents are not constrained. On the JA
side, the majoritarian outcome will be J. Since the majoritarian outcome is admissible, any
majority-consistent rule F' must return {J} on E(I) and A, which is not exhaustive. O

This result is far-reaching as most JA rules have been designed to be majority-consistent.
A first approach to circumvent this problem—that we only sketch here—could be to
define exhaustive embeddings in which exhaustiveness is logically encoded in the integrity
constraint. The tractable embedding could be extended that way by remembering the cost
of the smallest non-selected project to check for every leaf whether the budget allocation is
exhaustive or not. However, this approach can only be efficient for instances with a single
resource. In the multi-resources case, there could be exponentially many “cheapest projects”.
We will now discuss another approach: introducing new JA rules which are exhaustive.
In the context of PB, when an agent does not include a project in her approval ballot, this
does not imply that she does not want to see the project being funded, but rather that it is
not one of her top projects. Therefore, to implement PB via JA we need to adapt the JA
rules so that not selecting a project (i.e., not accepting a proposition) is not interpreted as a
rejection. To this end we introduce the new family of asymmetric JA rules. They avoid the
symmetric treatment of acceptance and rejection common in most standard JA rules.

Definition 6 (Asymmetric Additive Rules). Let F be an additive JA rule associated with
[(2P)" x Lit(P) — Rsq. Then its asymmetric counterpart Fos, is the rule for which, for
every integrity constraint I' and every profile J, we have:

Foey(T, J) = argmax Z f(J,0) +¢,
Je3(I) Leext(J)
£ is positive

where € < \Tl>| x min{f(J,) # 0| J € (2P ¢ € ext(J), ¥ is positive}.

Importantly, this definition applies only if f is R>g-valued. The use of € guarantees that
accepting positive literals will always be more appealing than accepting negative ones, while
being small enough so as to not impact the relative values of positive literals. Note that

€= IP\% is a suitable choice for the three rules defined near the end of Section 2.2.

Proposition 10. Let F' be an additive JA rule associated with an Rxo-valued function f.
Then the asymmetric counterpart of F satisfies exhaustiveness.

Proof. Executing F,,, involves computing a score for every admissible candidate outcome J.
By definition, no negative literal in J can contribute to its score, while every positive literal
makes a strictly positive contribution of at least €. Thus, flipping a negative literal increases
the score. So F,gy only returns admissible judgments for which flipping any negative literal
would violate the integrity constraint. This corresponds to exhaustiveness. O

Observe that the asymmetric counterpart of any additive rule is additive itself (and similarly
for scoring rules, albeit not for AMRs). Finally, it is interesting to note that the asymmetric
variant of the leximax rule is very similar to the well-known greedy approval rule for PB [1].

Kemeny rule Slater rule Leximax rule
usual asymmetric usual asymmetric usual asymmetric

Exhaustiveness X v X v X

Limit Monotonicity
Discount Monotonicity
Splitting Monotonicity
Merging Monotonicity

*x % N\ %
ERNEN
x % N\ %
> NN %
x % N\ %
*x NN\ X

Table 1: Summary of the axiomatic results.

5 Axiomatic Analysis

Axioms, such as exhaustiveness, are means for encoding formal properties related to the
normative adequacy of mechanisms for collective decision-making [40]. In this section we
investigate to what extent axioms proposed for PB are satisfied by JA rules. We consider
exhaustiveness to be a basic requirement in all PB processes, so in the following we will only
focus on settings where it is enforced—either via an exhaustive embedding or by the use of
asymmetric rules. The results of this section are summarised in Table 1.

The literature on axioms for PB is still sparse. We focus on the monotonicity axioms
introduced by Talmon and Faliszewski [39], generalising their definitions to allow for multiple
resources and irresolute rules. Formally, for a given PB axiom X, we say that the JA rule
F satisfies X w.r.t. embedding E if, for every PB instance I, the PB rule mapping A to
T(F(E(I), A)) for any given profile A satisfies X.

Moreover, for a resolute rule F', these axioms are usually stated as “when one moves
from (I, A) to another pair (I’, A"), then if F(I, A) satisfies a certain property, F(I’, A")
should satisfy a corresponding property.” We generalise these axioms to the irresolute case
by requiring that, if every budget allocation returned by our rule for (I, A) satisfies the
property in question, then every budget allocation for (I’, A’) should satisfy the corresponding
property. Note that “existential” generalisation have also been studied [3].

The first axiom is called limit monotonicity. It states that after any increase in the budget
limit that is not so substantial as to make some previously unaffordable project affordable,
any funded project should continue to get funded. This axiom is closely related to that of
committee monotonicity for multiwinner voting rules [12]. It is easy to see that none of the
JA rules of interest will satisfy it, even when |R| = 1.

Definition 7 (Limit monotonicity). A PB rule F' is said to be limit-monotonic if, for any
two PB instances I = (R,b,P,c) and I' = <727 b/,P,c> with b < b and c(p) < b for all
projects p € P, it is the case that (\F(I,A) C (N F(I', A) for all profiles A.

We move on to discount monotonicity, an axiom stating that, if the cost of a selected project
is reduced, then that project should continue to be selected.

Definition 8 (Discount monotonicity). A PB rule F is said to be discount-monotonic
if, for any two PB instances I = (R,b,P,c) and I' = (R,b',P,c) with c¢(p) > (p) and
c(p’) = (p) for all p' € P\ {p} for some distinguished project p € P, it is the case that
p € F(I,A) implies p € (\F(I', A) for all profiles A.

To study how JA rules deal with discount monotonicity, we introduce a new axiom for JA.
This axiom is relevant for us, since it is a sufficient condition for discount monotonicity.

Definition 9 (Constraint monotonicity). A JA rule F' is said to be constraint-monotonic if,
for any two integrity constraints T, T € Lp with J(T') C J(T") and any profile J, it is the
case that F(T', J)\ F(T,JJ) C 3T\ J@).

Lemma 11. FEvery constraint-monotonic JA rule is discount-monotonic with respect to any
correct embedding.

Our axiom turns out to be satisfied by many JA rules.
Proposition 12. Every additive JA rule is constraint-monotonic.

Proof. Consider any additive rule F'. Suppose, that F' is not constraint-monotonic. Then
there exist two integrity constraints I and I with J(I') C J(I') and a profile J for which
there exists a J € F(I',J) \ F(I',J) with J € J(I') \ J(I'"). As J ¢ F(I',J), there exists
some J' € J(T') with a higher total score than that of J. Moreover, since J(I') C J(IV),
this same J’ would outperform J also under I'. This implies that J ¢ F(I",J), which is a
contradiction, so we are done. O

Corollary 13. The Kemeny, Slater, and leximaz rules as well as their asymmetric counter-
parts are all discount-monotonic w.r.t. any correct embedding.

The last two axioms we consider deal with situations where projects are split into subprojects
(and the dual operation of merging projects). First, splitting monotonicity states that, if a
selected project is split into a set of projects approved by the same agents, then some of
these new projects should still be selected. The axiom of merging monotonicity expresses a
similar condition when merging projects.

Given a PB instance I = (R, b, P, c) and a profile A, we say that I’ = (R, b, P’, ') and
A’ are the result of splitting project p € P into P (with PNP = 0), if P’ = (P \ {p}) U P,
for all p’ € P, ¢(p) # 04, ¢(P) = c(p), ¢(p') = c(p/) for all p’ € P'\ P, A, = A, for alli e N
with p ¢ A;, and A, = (A; \ {p}) U P for all other i € N. We also say that I and A are the
result of merging P into p given I' and A'.

Definition 10 (Splitting monotonicity). A PB rule F is said to be splitting-monotonic if,
for any two PB instances I = (R,b,P,c) and I' = (R, b, P, ') with corresponding profiles
A and A’ such that I' and A’ are the result of splitting project p into P given I and A, it
is the case that if p € (F(I', A) then ANP #0 for all A’ € F(I', A).

Definition 11 (Merging monotonicity). A PB rule F' is said to be merging-monotonic if,
for any two PB instances I = (R,b,P,c) and I' = (R,b,P’, ') with corresponding profiles
A and A’ such that I' and A’ are the result of merging project set P into project p given I
and A, it is the case that P C (\F(I, A) impliesp e (F(I', A).

We first show that splitting monotonicity is satisfied by the asymmetric counterpart of
any AMR.

Proposition 14. Every asymmetric counterpart of an AMR is splitting-monotonic.

Proof. Let F' be the asymmetric counterpart of an AMR and let E be a correct exhaustive
embedding. Consider a PB instance I = (R,b, P, c) and a profile A. Let I' = (R,b,P’,c)
and A’ be the instance and profile resulting from splitting p € " 7(F(E(I), A)) into P.

Consider any outcome J; € F(E(I), A). Note that for all J € J(E(I)) NJ(E(I")), we
have p ¢ 7(J) and 7(J) N P = 0. Because p € (\7(F(E(I),A)), this implies that J; has a
higher total score than any Jy € J(E(I)) N J(E(I")).

Consider now a possible outcome J; = (J1 \ {p}) U {p’} for some p’ € P. Based on the
definition of A’} it is clear that nA = nA" for every = € J; \ {z,} and that n;i = nA
Hence, because F' is the asymmetric counterpart of an AMR, J; and Js have the same total
score. Indeed, the total score for an AMR only depends on the approval score of each literal
and because F' is asymmetric we only consider positive literals. This implies that J| has
a higher total score than any Jy € J(E(I)) NJ(E(I")). Thus, J(E(I))NF(E(I'),A") = 0.
As for every J' € J(E(I")) \ J(E(I)) we have PN 7(J") # 0, every outcome returned by F
would have a nonempty intersection with P. O

While this last result is promising, it unfortunately does not extend to symmetric rules.

Example 3. Consider the following pairs of instances and three-agent profiles: I and A on
the left and I’ and A’ on the right. Both involve just one resource, with b; = 4.

Project pr p2 ps pa|pr {ph.03p3.P3} ps pa
Cost 2 2 1 1]2 0.5 11
Agents land2 v X X X ‘ 4 X X X
Agent 3 X v 7/ VX v a4

Note that I’ and A" are the result of splitting ps into {p3, p3, p3,p3}, given I and A. One
can check that the Kemeny, the Slater, and the leximax rules would all return {{p1,p2}}
for (I, A) when used with a correct exhaustive embedding. However, they would return
{{p1,p3,pa}} for (I', A"), hence, violating splitting monotonicity. A

We finally investigate merging monotonicity. It turns out that none of the rules we are
considering in this paper satisfy it. A simple counterexample is described in the following.
Consider an instance with one resource, a budget of 4, and six projects: four of cost 1 and
two of cost 2. Consider now a profile with a single agent approving of every project. Then
all of our rules (Kemeny, Slater, and leximax) would select the four projects of cost 1. Now,
if the four projects of cost 1 are merged into one project of cost 4, all our rules would select
the two projects of cost 2. This is a violation of merging monotonicity as the newly created
project is not selected. By construction, the same also holds for the asymmetric counterparts.

To conclude, we shortly discuss the overall axiomatic picture for JA rules. The most
striking results are that none of our rules satisfy limit and merging monotonicity. For limit
monotonicity, it should be noted that no PB rule we know of satisfies it [39]. It seems to be
too strong a requirement. For merging monotonicity, the situation is less clear-cut: Some
PB rules satisfy it but none that are widely used. Other axiomatic results are in line with
those of Talmon and Faliszewski [39]. Overall, JA rules perform similarly to other PB rules
in normative terms.

6 Conclusion

We have proposed an efficient way of solving PB problems by means of JA rules. The richness
of the JA framework allowed us to develop embeddings for generalised forms of PB. While
the resulting problems are computationally hard in general, we nevertheless were able to
present useful parameterized embeddings for them. Regarding the axiomatic properties, we
observed that a naive way of embedding PB into JA leads to rules that violate the crucial
exhaustiveness requirement of PB. We suggested to use asymmetric JA rules to enforce
it. We also analysed some common JA rules and their asymmetric counterparts in view of
monotonicity axioms for PB.

In terms of future work, it would be interesting to study more PB axioms, to allow us
to better differentiate between different JA rules. An exciting direction is to investigate
proportionality axioms such as those introduced by Aziz et al. [2] and Haret et al. [25].
Whether the model of Jain et al. [26] fits in our framework is another one. Finally, it seems
worth exploring whether some structural assumptions on the PB side could be translated
into meaningful properties on the JA side.

Beyond its immediate significance to the theory and practice of PB, we believe our work
also highlights some important aspects of working with different frameworks for collective
decision making. The high expressive power of JA permits us to encode many problems of
practical interest as well. Finding efficient ways of solving decision problems embedded into
JA can be hard, but once identified, these methods allow for great flexibility.

References

[1]

Haris Aziz and Nisarg Shah. Participatory budgeting: Models and approaches. In
Pathways between Social Science and Computational Social Science: Theories, Methods
and Interpretations. Springer, 2020.

Haris Aziz, Barton E. Lee, and Nimrod Talmon. Proportionally representative partic-
ipatory budgeting: Axioms and algorithms. In Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 23-31,
2018.

Dorothea Baumeister, Linus Boes, and Tessa Seeger. Irresolute approval-based budget-
ing. In Proceedings of the 19th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), pages 1774-1776, 2020.

Rachel Ben-Eliyahu and Rina Dechter. On computing minimal models. Annals of
Mathematics and Artificial Intelligence, 18(1):3-27, 1996.

Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theo-
retical Computer Science, 209(1-2):1-45, 1998.

Yves Cabannes. Participatory budgeting: A significant contribution to participatory
democracy. Environment and Urbanization, 16(1):27-46, 2004.

Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making. In
Proceedings of the 18th ACM Conference on Economics and Computation (EC), pages
629-646, 2017.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of
Artificial Intelligence Research, 17:229-264, 2002.

Franz Dietrich. Scoring rules for judgment aggregation. Social Choice and Welfare, 42
(4):873-911, 2014.

Franz Dietrich and Christian List. Arrow’s Theorem in judgment aggregation. Social
Choice and Welfare, 29(1):19-33, 2007.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complezity.
Springer, 2013.

Edith Elkind, Piotr Faliszewski, Piotr Skowron, and Arkadii Slinko. Properties of
multiwinner voting rules. Social Choice and Welfare, 48(3):599-632, 2017.

Ulle Endriss. Judgment aggregation. In Felix Brandt, Vincent Conitzer, Ulle Endriss,
Jérome Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice,
chapter 17. Cambridge University Press, 2016.

Ulle Endriss. Judgment aggregation with rationality and feasibility constraints. In
Proceedings of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 946-954, 2018.

Ulle Endriss and Ronald De Haan. Complexity of the winner determination problem in
judgment aggregation: Kemeny, Slater, Tideman, Young. In Proceedings of the 14th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2015.

[16]

[17]

[18]

[19]

24

[25]

126

[29]

[30]

Ulle Endriss, Umberto Grandi, and Daniele Porello. Complexity of judgment aggregation.
Journal of Artificial Intelligence Research, 45:481-514, 2012.

Ulle Endriss, Umberto Grandi, Ronald De Haan, and Jérome Lang. Succinctness of
languages for judgment aggregation. In Proceedings of the 15th International Conference
on Principles of Knowledge Representation and Reasoning (KR), 2016.

Patricia Everaere, Sébastien Konieczny, and Pierre Marquis. Counting votes for aggre-
gating judgments. In Proceedings of the 13th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 1177-1184, 2014.

B. Fain, A. Goel, and K. Munagala. The core of the participatory budgeting problem.
In Proceedings of the 12th International Workshop on Internet and Network Economics
(WINE), pages 384-399, 2016.

Brandon Fain, Kamesh Munagala, and Nisarg Shah. Fair allocation of indivisible public
goods. In Proceedings of the 19th ACM Conference on Economics and Computation
(EC), pages 575-592, 2018.

Rupert Freeman, David M. Pennock, Dominik Peters, and Jennifer Wortman Vaughan.
Truthful aggregation of budget proposals. In Proceedings of the 20th ACM Conference
on Economics and Computation (EC), pages 751-752, 2019.

Michael R. Garey and David S. Johnson. Computers and Intractability, volume 29. W.H.
Freeman, 1979.

Umberto Grandi and Ulle Endriss. Binary aggregation with integrity constraints. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI),
pages 204-209, 2011.

Ronald De Haan. Hunting for tractable languages for judgment aggregation. In Proceed-
ings of the 16th International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 194-203, 2018.

Adrian Haret, Martin Lackner, Andreas Pfandler, and Johannes P. Wallner. Proportional
belief merging. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI), pages 2822-2829, 2020.

Pallavi Jain, Krzysztof Sornat, and Nimrod Talmon. Participatory budgeting with
project interactions. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI), 2020.

Pallavi Jain, Krzysztof Sornat, Nimrod Talmon, and Meirav Zehavi. Participatory
budgeting with project groups. arXiv preprint arXiw:2012.05213, 2020.

Jérome Lang, Gabriella Pigozzi, Marija Slavkovik, and Leendert Van der Torre. Judgment
aggregation rules based on minimization. In Proceedings of the 13th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK), pages 238-246, 2011.

Jérome Lang and Marija Slavkovik. Judgment aggregation rules and voting rules. In
Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT),
pages 230-243, 2013.

Jérome Lang and Marija Slavkovik. How hard is it to compute majority-preserving
judgment aggregation rules? In Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI), pages 501-506, 2014.

[31]

32]

[33]

[34]

[35]

[40]

Christian List and Philip Pettit. Aggregating sets of judgments: An impossibility result.
Economics & Philosophy, 18(1):89-110, 2002.

Tyler Lu and Craig Boutilier. Budgeted social choice: From consensus to personalized
decision making. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pages 280-286, 2011.

Michael K. Miller and Daniel Osherson. Methods for distance-based judgment aggrega-
tion. Social Choice and Welfare, 32(4):575-601, 2009.

Klaus Nehring and Marcus Pivato. Majority rule in the absence of a majority. Journal
of Economic Theory, pages 213-257, 2019.

Deval Patel, Arindam Khan, and Anand Louis. Group fairness for knapsack problems. In
Proceedings of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2021.

Gabriella Pigozzi. Belief merging and the discursive dilemma: An argument-based
account to paradoxes of judgment aggregation. Synthese, 152(2):285-298, 2006.

Simon Rey, Ulle Endriss, and Ronald de Haan. Designing participatory budgeting
mechanisms grounded in judgment aggregation. In Proceedings of the 17th International
Conference on Principles of Knowledge Representation and Reasoning (KR), 2020.

Anwar Shah, editor. Participatory budgeting. Public Sector Governance and Account-
ability Series. The World Bank, Washington, DC, 2007.

Nimrod Talmon and Piotr Faliszewski. A framework for approval-based budgeting
methods. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI),
pages 2181-2188, 2019.

William Thomson. On the axiomatic method and its recent applications to game theory
and resource allocation. Social Choice and Welfare, 18(2):327-386, 2001.

Simon Rey

ILLC, University of Amsterdam
Amsterdam, The Netherlands
Email: s.j.rey@uva.nl

Ulle Endriss

ILLC, University of Amsterdam
Amsterdam, The Netherlands
Email: u.endriss@uva.nl

Ronald de Haan

ILLC, University of Amsterdam
Amsterdam, The Netherlands
Email: r.dehaan@uva.nl

