Fairness in Participatory Budgeting via Equality of Resources

Simon Rey

Joint work with Jan Maly, Ulle Endriss and Martin Lackner

Institute for Logic, Language and Computation (ILLC) University of Amsterdam

2022 SSCW Meeting

1. Introduction

Participatory Budgeting

Participatory Budgeting

Standard Model of Participatory Budgeting

Fairness Requirements

Compatibility

Algorithmic Perspective

Fairness is about distributing some *measure* fairly among the agents. → What is a good measure in the case of participatory budgeting?

Fairness is about distributing some *measure* fairly among the agents.

 \mapsto What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

Fairness is about distributing some *measure* fairly among the agents.

 \mapsto What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

Cardinal Utility Functions

✓ The satisfaction of an agent is obvious

 $\pmb{\times}$ Hard to elicit

✗ Does not allow for interpersonal comparisons

Fairness is about distributing some *measure* fairly among the agents.
→ What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

Cardinal Utility Functions

✓ The satisfaction of an agent is obvious

- \checkmark Hard to elicit
- ✗ Does not allow for interpersonal comparisons

Approval-Based Satisfaction

- \checkmark Easy to elecit
- $\checkmark~$ Has a clear meaning
- $\textbf{X} \quad \begin{array}{l} \text{Unclear what proxy} \\ \text{for satisfaction to use} \\ |A \cap \pi| \qquad c(A \cap \pi) \end{array}$

Fairness is about distributing some *measure* fairly among the agents.
→ What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

Cardinal Utility Functions

✓ The satisfaction of an agent is obvious

✗ Hard to elicit

✗ Does not allow for interpersonal comparisons Approval-Based Satisfaction

- \checkmark Easy to elecit
- $\checkmark~$ Has a clear meaning
- $\textbf{X} \quad \begin{array}{l} \text{Unclear what proxy} \\ \text{for satisfaction to use} \\ |A \cap \pi| \quad c(A \cap \pi) \end{array}$

We aim at *equity of resources* among the agents.

2. The Share

The share of an agent: the ressources spent on that specific agent $share(\pi, A_i) = \sum_{p \in \pi \cap A_i} \frac{c(p)}{|\{A' \in \mathbf{A} \mid p \in A'\}|}$

3. Providing Fair Share

Every agent is provided their *fair share*, *i.e.*:

$$share(\pi, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

Every agent is provided their *fair share*, *i.e.*:

$$share(\pi, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

Fairness in Participatory Budgeting via Equality of Resource

Every agent is provided their *fair share*, *i.e.*:

$$share(\pi, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

Every agent is provided their *fair share*, *i.e.*:

$$share(\pi, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

Fairness in Participatory Budgeting via Equality of Resource

Every agent is provided their *fair share*, *i.e.*:

$$share(\pi, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

Fairness in Participatory Budgeting via Equality of Resource

A First Problem

A First Problem

It is not possible to always provide fair share to everyone (and hard to know if we can).

4. Experimental Analysis of the Share

 $Measures \ of \ Interest:$

• The average capped fair share ratio:

 $\frac{share(\pi, i)}{fairshare(i)}$

 $Measures \ of \ Interest:$

• The average capped fair share ratio:

$$\frac{1}{n} \sum_{i \in \mathcal{N}} \min\left\{\frac{share(\pi, i)}{fairshare(i)}, 1\right\}$$

 $Measures \ of \ Interest:$

- The average capped fair share ratio:
- The average L_1 distance to fair share:

$$\frac{1}{n} \sum_{i \in \mathcal{N}} \min\left\{\frac{share(\pi, i)}{fairshare(i)}, 1\right\}$$
$$\frac{1}{n} \sum_{i \in \mathcal{N}} |share(\pi, i) - fairshare(i)|$$

 $Measures \ of \ Interest:$

- The average capped fair share ratio:
- The average L_1 distance to fair share:

$$\frac{1}{n} \sum_{i \in \mathcal{N}} \min\left\{\frac{share(\pi, i)}{fairshare(i)}, 1\right\}$$
$$\frac{1}{n} \sum_{i \in \mathcal{N}} |share(\pi, i) - fairshare(i)|$$

Fair share can be provided in only one instance out of the 353 considered (with 3 projects and 198 voters).

Optimising the Measures of Interest

Fairness in Participatory Budgeting via Equality of Resource

11 / 16

Optimising the Measures of Interest

 \mapsto We are far from achieving fair share.

Optimising the Measures of Interest

We are far from achieving fair share.
It gets easier as the number of projects increase.

Optimal Average Fair Share Ratio – Preprocessing

• Fair Share is hard to satisfy, *structurally* hard.

5. <u>Approximate Fair Share</u>

Every agent is provided their *fair share up to one project*, *i.e.*, for each agent there exists a project $p \in \mathcal{P}$ such that:

$$share(\pi \cup \{p\}, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

Every agent is provided their *fair share up to one project*, *i.e.*, for each agent there exists a project $p \in \mathcal{P}$ such that:

$$share(\pi \cup \{p\}, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

→ This is however still unsatisfiable (and hard again)...

$$share(\pi \cup \{p\}, A_i) < \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

$$share(\pi \cup \{p\}, A_i) < \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

- \rightarrow An explanation? If such a p exists, all supporters of p receive less than their fair share and:
- Either p can be selected without exceeding the budget limit; let's select it then!
- Or, some voter i^* received more than their fair share; let's then exchange a project approved by i^* with p!

$$share(\pi \cup \{p\}, A_i) < \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

- \rightarrow An explanation? If such a p exists, all supporters of p receive less than their fair share and:
- Either p can be selected without exceeding the budget limit; let's select it then!
- Or, some voter i^* received more than their fair share; let's then exchange a project approved by i^* with p!

Local fair share is always satisfiable (and in polynomial time, through MES)!

$$share(\pi \cup \{p\}, A_i) < \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

- \rightarrow An explanation? If such a p exists, all supporters of p receive less than their fair share and:
- Either p can be selected without exceeding the budget limit; let's select it then!
- Or, some voter i^* received more than their fair share; let's then exchange a project approved by i^* with p!

Local fair share is always satisfiable (and in polynomial time, through MES)!

• But how does MES performs in terms of fair share?

Simon Rey

6. Achieved Fair Share by Common Rules

→ The capped fair share ratio is not a good measure because it is correlated to *the budget used*.

→ The capped fair share ratio is not a good measure because it is correlated to *the budget used*.

The capped fair share ratio is not a good measure because it is correlated to the budget used.
 MES rules approach fair share nicely, and MES_{cost} is particularly attractive.

7. Conclusion

Wrap-Up

We have...

- ...Argued for defining fairness in terms of equity of resources;
- ... Presented the share, one operationalisation of this idea;
- ...Discussed fair share in some depth, both theoretically and experimentally.

Wrap-Up

We have...

- ...Argued for defining fairness in terms of equity of resources;
- ... Presented the share, one operationalisation of this idea;
- ...Discussed fair share in some depth, both theoretically and experimentally.

Future work includes:

- Looking for non-sequential rules that could provide strong requirements (when they exist), e.g., rules optimizing for fair share;
- Extending the experimental section: can we provide satisfaction-based and effort-based fairness at the same time?

Wrap-Up

We have...

- ...Argued for defining fairness in terms of equity of resources;
- ... Presented the share, one operationalisation of this idea;
- ...Discussed fair share in some depth, both theoretically and experimentally.

Future work includes:

- Looking for non-sequential rules that could provide strong requirements (when they exist), *e.g.*, rules optimizing for fair share;
- Extending the experimental section: can we provide satisfaction-based and effort-based fairness at the same time?

THANKS!