Almost Group Envy-free Allocation of Indivisible Goods and Bads

Simon Rey, joint work with Haris Aziz

November 4, 2019

1. Fair division

Fair division

Introduction

Fundamental question

Given a set of items and a set of agents expressing preferences over the items, how can we allocate the items to the agents in the fairest way?

Potential applications - Cake Cutting

Potential applications - Cake Cutting

- Set of items: a heterogeneous continuous cake modelled as an interval

Potential applications - Cake Cutting

- Set of items: a heterogeneous continuous cake modelled as an interval
- Allocation: a set of slices from the cake given to the agents

Potential applications - Cake Cutting

- Set of items: a heterogeneous continuous cake modelled as an interval
- Allocation: a set of slices from the cake given to the agents
- Set of agents: hungry agents

Potential applications - Cake Cutting

- Set of items: a heterogeneous continuous cake modelled as an interval
- Allocation: a set of slices from the cake given to the agents
- Set of agents: hungry agents
- Preferences: taste for the cake expressed by integrable value function

Potential applications - Cake Cutting

- Set of items: a heterogeneous continuous cake modelled as an interval
- Allocation: a set of slices from the cake given to the agents
- Set of agents: hungry agents
- Preferences: taste for the cake expressed by integrable value function
- Fairness: no jealousy between the agents

Potential applications - Inheritance

L'HÉRitase de JOHNNy

Potential applications - Inheritance

L'HÉRitAGE DE JOHNNY

- Set of items: the deceased person's belongings (divisible and indivisible)

Potential applications - Inheritance

L'HÉRiTAGE DE JOHNNY

- Set of items: the deceased person's belongings (divisible and indivisible)
- Allocation: a subset of the items given to each agents

Potential applications - Inheritance

L'HÉRiTAGE DE JOHNNY

- Set of items: the deceased person's belongings (divisible and indivisible)
- Allocation: a subset of the items given to each agents
- Set of agents: inheritors

Potential applications - Inheritance

L'HÉRiTAGE DE JOHNNY

- Set of items: the deceased person's belongings (divisible and indivisible)
- Allocation: a subset of the items given to each agents
- Set of agents: inheritors
- Preferences: willingness to inherit each item

Potential applications - Inheritance

L'HÉRiTAGE DE JOHNNY

- Set of items: the deceased person's belongings (divisible and indivisible)
- Allocation: a subset of the items given to each agents
- Set of agents: inheritors
- Preferences: willingness to inherit each item
- Fairness: no one believes someone has been spoiled

Potential applications - Task sharing

I HAVE TO WRITE A PARAGRAPH ON WHAT I DID ONER THE SYMMER! A HHOLE PARGGEPPH."

Potential applications - Task sharing

- Set of items: a set of tasks

Potential applications - Task sharing

I HAVE TO WRITE A PARAGRAPH ON WHAT I DID ONER THE SYMMER! A HHOLE PARGGEPPM."

- Set of items: a set of tasks
- Allocation: a task assignment

Potential applications - Task sharing

I HAVE TO WRITE A PARAGRAPH ON WHAT I DID ONER THE SYMMER! A WHOLE PARGGPDPH."

- Set of items: a set of tasks
- Allocation: a task assignment
- Set of agents: workers

Potential applications - Task sharing

- Set of items: a set of tasks
- Allocation: a task assignment
- Set of agents: workers
- Preferences: happiness to perform a given task

Potential applications - Task sharing

I HAVE TO WRITE A PARAGRAPH ON WHAT I DID ONER THE SUMMER! A HHOLE PARGGENPH."

- Set of items: a set of tasks
- Allocation: a task assignment
- Set of agents: workers
- Preferences: happiness to perform a given task
- Fairness: (almost) no jealousy between agents

Fair division

Historical perspectives

Seminal work

CONTRIBUTED PAPERS, II

Wednesday, Sept. 17, 9:30 a.m. Chairman: Herman O. A. Wold (Sweden)

The Problem of Fair Division
Hugo Steinhaus, Professor, University of Warsaw (Poland)

There is a custom, probably many centuries old, of dividing an object into two equal parts by letting one partner halve it and the other choose his half. The custom is also that the older one has to halve.

This procedure is a fair game. As every game, it has its rules and its methods. The rule for the first partner allows him to cut the objectit may be a cake-as he pleases; the rule for the second one gives him a free choce of one of the two slices. The methods are: (1) for the older

Hugo Steinhauss defined in 1948 The Fair Division Problem, he introduced formally the cake-cutting problem and proposed some allocation rules.

Fair division's grounds

Fair Division

Fair division's grounds

General Equilibria

Fair Division

Fair division's grounds

Fair division's grounds

Game Theory

John von Neumann

Oscar Morgenstern

John Nash Lloyd Shpaley

A prolific literature

Today's topic

- Set of items:

Today's topic

- Set of items:
- Set of agents:

Today's topic

- Set of items:
- Set of agents:
- Preferences:

Today's topic

- Set of items:
- Set of agents:
- Preferences:
- Allocation:

Today's topic

- Set of items:
- Set of agents:
- Preferences:
- Allocation:
- Fairness:

Today's topic

- Set of items: a set of indivisible goods and bads
- Set of agents:
- Preferences:
- Allocation:
- Fairness:

Today's topic

- Set of items: a set of indivisible goods and bads
- Set of agents: any kind of agents
- Preferences:
- Allocation:
- Fairness:

Today's topic

- Set of items: a set of indivisible goods and bads
- Set of agents: any kind of agents
- Preferences: additive preferences
- Allocation:
- Fairness:

Today's topic

- Set of items: a set of indivisible goods and bads
- Set of agents: any kind of agents
- Preferences: additive preferences
- Allocation: a subset of items for each agent
- Fairness:

Today's topic

- Set of items: a set of indivisible goods and bads
- Set of agents: any kind of agents
- Preferences: additive preferences
- Allocation: a subset of items for each agent
- Fairness: no jealousy between groups of agents

2. Model

Fair division of indivisible items

Ulle

Sirin

Zoi

Fair division of indivisible items

Fair division of indivisible items

Definition: Allocation

Let \mathcal{N} be a set of agents, \mathcal{O} an set of items, an allocation $\pi=$ $\left\langle\pi_{1}, \ldots, \pi_{|N|}\right\rangle$ from \mathcal{O} to \mathcal{N} is a vector which i 's component corresponds to the subset of items allocated to agent i. An allocation is such that:

- all the items are allocated, and,
- an item can only be allocated to one agent.

Agent's preferences

Agent $i \in \mathcal{N}$ expresses her preferences through an utility function:

$$
u_{i}: 2^{\mathcal{O}} \rightarrow \mathbb{R}
$$

Agent's preferences

Agent $i \in \mathcal{N}$ expresses her preferences through an utility function:

$$
u_{i}: 2^{\mathcal{O}} \rightarrow \mathbb{R}
$$

Preferences are assume to be additive: for every agent $i \in \mathcal{N}$ and for every item $O \subseteq \mathcal{O}$:

$$
u_{i}(O)=\sum_{o \in O} u_{i}(o)
$$

Agent's preferences

Agent $i \in \mathcal{N}$ expresses her preferences through an utility function:

$$
u_{i}: 2^{\mathcal{O}} \rightarrow \mathbb{R}
$$

Preferences are assume to be additive: for every agent $i \in \mathcal{N}$ and for every item $O \subseteq \mathcal{O}$:

$$
u_{i}(O)=\sum_{o \in O} u_{i}(o)
$$

For a given agent $i \in \mathcal{N}$, an item $o \in \mathcal{O}$ is said to be:

- a good if $u_{i}(0) \geq 0$,
- a bad if $u_{i}(o) \leq 0$.

3. No-envy as a fairness criteria

No-envy as a fairness criteria

When there are only goods

Envy-freeness (EF)

Envy-freeness (EF)

Envy-freeness (EF)

[1] Foley "Resource allocation and the public sector." (1967)

Summary on envy-freeness

$x\left(\begin{array}{c}\text { Ulle: } \\ \text { Sirin: } \\ \text { Zoi: }\end{array}\right)$ is not envy-free.

Summary on envy-freeness

x There is no existence guarantee for envy-free allocations when items are indivisible.

Summary on envy-freeness

x There is no existence guarantee for envy-free allocations when items are indivisible.
\leftrightarrow How can we get existence guarantee ?

Envy-freeness up to one good (EF1)

Envy-freeness up to one good (EF1)

[3] Budish "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes" (2011)

Summary on envy-freeness up to one good

is not EF1: Sirin is still envious after removal.
[2] Lipton, Markakis, Mossel, and Saberi "On approximately fair allocations of indivisible goods" (2004)

Summary on envy-freeness up to one good

Ulle
 \circ

Sirin:
is not EF1: Sirin is still envious after removal.

Zoi:

\checkmark An envy-free up to one good allocation always exists and can be computed efficiently (in polynomial time) even for non-additive preferences. [2]
[2] Lipton, Markakis, Mossel, and Saberi "On approximately fair allocations of indivisible goods" (2004)

Summary on envy-freeness up to one good

Ulle:
 -

Sirin: 0
is not EF1: Sirin is still envious after removal.
\checkmark An envy-free up to one good allocation always exists and can be computed efficiently (in polynomial time) even for non-additive preferences. [2]
\Leftrightarrow What does happen when there are bads?
[2] Lipton, Markakis, Mossel, and Saberi "On approximately fair allocations of indivisible goods" (2004)

No-envy as a fairness criteria

When there are goods and bads

Fair division of indivisible goods and bads

\oplus

Ulle

Sirin

Zoi

Fair division of indivisible goods and bads

Envy-freeness (EF)

Envy-freeness (EF)

Envy-freeness up to one item (EF1)

Ulle

- 2 receives

Sirin

Zoi

Envy-freeness up to one item (EF1)

Summary on envy-freeness up to item

[4] Aziz, Caragiannis, Igarashi, and Walsh "Fair allocation of combinations of indivisible goods and chores" (2019)

Summary on envy-freeness up to item

Ulle: $\oplus \rho$ Sirin: $\Theta \square$ is EF1.
 Zoi: 3

\checkmark An envy-free up to one item allocation always exists when there are goods and bads and can be computed in polynomial time whatever the preferences are. [4]
[4] Aziz, Caragiannis, Igarashi, and Walsh "Fair allocation of combinations of indivisible goods and chores" (2019)

Summary on envy-freeness up to item

\checkmark An envy-free up to one item allocation always exists when there are goods and bads and can be computed in polynomial time whatever the preferences are. [4]
\leftrightarrow How can we generalize this approach to groups of agents ?
[4] Aziz, Caragiannis, Igarashi, and Walsh "Fair allocation of combinations of indivisible goods and chores" (2019)

4. Group envy-free allocations

Group envy-free allocations (GEF)

Group envy-free allocations (GEF)

Group envy-free allocations (GEF)

Group envy-free allocations (GEF)

\Leftrightarrow What does "prefer" mean here?

Group envy-free allocations (GEF)

\Leftrightarrow What does "prefer" mean here?

receives from S . and U .

Arthur
$\xrightarrow{\text { receives from } S . \text { and } U \text {. }}$ Zoi

Group envy-free allocations (GEF)

\Leftrightarrow What does "prefer" mean here?

Mathematical formalization

Definition: Group envy-freeness
Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with both goods and bads.
An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ is GEF if:
(1) for every non-empty $S \subseteq \mathcal{N}$ and $T \subseteq \mathcal{N}$ such that $|S|=|T|$
(2) there is no reallocation $\pi^{\prime} \in \Pi\left(\pi_{T}, S\right)$ such that:
(3) π^{\prime} Pareto-dominates π for agents in T.

Mathematical formalization

Definition: Group envy-freeness
Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with both goods and bads.
An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ is GEF if:
(1) for every non-empty $S \subseteq \mathcal{N}$ and $T \subseteq \mathcal{N}$ such that $|S|=|T|$
(2) there is no reallocation $\pi^{\prime} \in \Pi\left(\pi_{T}, S\right)$ such that:
(0) π^{\prime} Pareto-dominates π for agents in T.
\checkmark Implies Pareto-optimality for $S=T=\mathcal{N}$.
\checkmark Implies envy-freeness for $|S|=|T|=1$,
X which implies non-existence.

Mathematical formalization

Definition: Group envy-freeness
Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with both goods and bads.
An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ is GEF if:
(1) for every non-empty $S \subseteq \mathcal{N}$ and $T \subseteq \mathcal{N}$ such that $|S|=|T|$
(2) there is no reallocation $\pi^{\prime} \in \Pi\left(\pi_{T}, S\right)$ such that:
(0) π^{\prime} Pareto-dominates π for agents in T.
\checkmark Implies Pareto-optimality for $S=T=\mathcal{N}$.
\checkmark Implies envy-freeness for $|S|=|T|=1$,
X which implies non-existence.
\Leftrightarrow How can we get guarantees for existence of GEF allocations?

Group envy-freeness up to one item

Group envy-freeness up to one item

Group envy-freeness up to one item

\Leftrightarrow Need to check for every reallocation.

Mathematical formalization

Definition: GEF1
Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with both goods and bads.
An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ is GEF1 if:
(1) for every pair of non empty groups, $S \subseteq \mathcal{N}$ and $T \subseteq \mathcal{N}$, such that $|S|=|T|$,
(2) for every reallocation $\pi^{\prime} \in \Pi\left(\pi_{T}, S\right)$, and
(3) for every agent $i \in S$, there exists $o_{i} \in \pi_{i} \cup \pi_{i}^{\prime}$ such that $\left\langle u_{i}\left(\pi_{i}^{\prime} \backslash\left\{o_{i}\right\}\right)\right\rangle_{i \in S}$ does not Pareto-dominate $\left\langle u_{i}\left(\pi_{i} \backslash\left\{o_{i}\right\}\right)\right\rangle_{i \in S}$.

Mathematical formalization

Definition: GEF1
Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with both goods and bads.
An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ is GEF1 if:
(1) for every pair of non empty groups, $S \subseteq \mathcal{N}$ and $T \subseteq \mathcal{N}$, such that $|S|=|T|$,
(2) for every reallocation $\pi^{\prime} \in \Pi\left(\pi_{T}, S\right)$, and
(0) for every agent $i \in S$, there exists $o_{i} \in \pi_{i} \cup \pi_{i}^{\prime}$ such that $\left\langle u_{i}\left(\pi_{i}^{\prime} \backslash\left\{o_{i}\right\}\right)\right\rangle_{i \in S}$ does not Pareto-dominate $\left\langle u_{i}\left(\pi_{i} \backslash\left\{o_{i}\right\}\right)\right\rangle_{i \in S}$.
\checkmark Implies envy-freeness up to one item for $|S|=|T|=1$,

Related work

[5] 1972 Schmeidler and Vind: introduced the idea of fairness criteria between groups of different size.
[6] 1992 Berliant, Thomson, and Dunz: defined group envy-freeness when items are divisible goods.
[7] 2019 Conitzer, Freeman, Shah, and Vaughan: extended group-envy freeness to group fairness when items are indivisible goods and groups of different size are compared.
[5] Schmeidler and Vind "Fair net trades" (1972)
[6] Berliant, Thomson, and Dunz "On the fair division of a heterogeneous commodity" (1992)
[7] Conitzer, Freeman, Shah, and Vaughan "Group Fairness for the Allocation of Indivisible Goods" (2019)

Taxonomy of fairness criteria

5. Existence results for GEF1 allocations

When all items are goods

When there are only goods, [7] shown that by maximizing the Nash welfare one get GEF1.

Theorem: Conitzer, Freeman, Shah, and Vaughan Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with only goods, and such that preferences are additives. An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfying GEF1 always exists and can be computed in pseudo-polynomial time.
[7] Conitzer, Freeman, Shah, and Vaughan "Group Fairness for the Allocation of Indivisible Goods" (2019)

When all items are goods

When there are only goods, [7] shown that by maximizing the Nash welfare one get GEF1.

Theorem: Conitzer, Freeman, Shah, and Vaughan Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with only goods, and such that preferences are additives. An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfying GEF1 always exists and can be computed in pseudo-polynomial time.
\Leftrightarrow Can we generalized this result for goods and bads ?
[7] Conitzer, Freeman, Shah, and Vaughan "Group Fairness for the Allocation of Indivisible Goods" (2019)

Existence results for GEF1 allocations

With identical preferences

GEF1 with identical preferences

Lemma:
Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with goods and bad such that the preferences are identical and additive. Every allocation $\pi \in$ $\Pi(\mathcal{O}, \mathcal{N})$ satisfying $E F X$ also satisfies GEF1.

Egal-sequential algorithm

Lemma:
An EFX allocation can be computed in time in $\mathcal{O}(m n)$.

Egal-sequential algorithm

Input: An instance $\left.I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right)\right\rangle \in \mathcal{I}$ such that $\forall i \in \mathcal{N}, u_{i}=u$, for a given utility function u
Output: $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ an EFX allocation $\pi \leftarrow$ empty allocation
Sort items o_{1}, \ldots, o_{m} in decreasing order of $|u(o)|$

$$
\text { for } j=1 \text { to } m \text { do }
$$

if $u\left(o_{j}\right) \geq 0$ then
Choose $i^{*} \in \arg \min _{i \in \mathcal{N}} u\left(\pi_{i}\right)$
else
Choose $i^{*} \in \arg \max _{i \in \mathcal{N}} u\left(\pi_{i}\right)$
Allocate o_{j} to $i^{*}: \pi_{i^{*}} \leftarrow \pi_{i^{*}} \cup\left\{o_{j}\right\}$
return π

GEF1 with identical preferences

Theorem:

Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with goods and bad such that the preferences are identical and additive. An allocation $\pi \in$ $\Pi(\mathcal{O}, \mathcal{N})$ satisfying GEF1 always exists and can be computed in polynomial time.

Example of the egal-sequential algorithm

EXAMPLE: Let us consider two agents with the following preferences

5

-4

3

-6

1

2

Example of the egal-sequential algorithm

EXAMPLE: Let us consider two agents with the following preferences

The current allocation is:
Sirin: \varnothing
Ulle: \varnothing
Utility: 0
Utility: 0

Example of the egal-sequential algorithm

ExAMPLE: Let us consider two agents with the following preferences

-6

5

-4

3

2

1

The current allocation is:
Sirin:

Ulle: \varnothing
Utility: -6
Utility: 0

Example of the egal-sequential algorithm

EXAMPLE: Let us consider two agents with the following preferences

-6

5

-4

3

2

1

The current allocation is:
Sirin:
Ulle: \varnothing
Utility: -1
Utility: 0

Example of the egal-sequential algorithm

ExAMPLE: Let us consider two agents with the following preferences

-6

5

-4

3

2

1

The current allocation is:
Sirin:

Ulle: 9
Utility : -1
Utility : -4

Example of the egal-sequential algorithm

ExAMPLE: Let us consider two agents with the following preferences

-6

5

-4

3

2

1

The current allocation is:

Sirin: Ulle: 0	
Utility : -1	Utility : -1

Example of the egal-sequential algorithm

ExAMPLE: Let us consider two agents with the following preferences

-6

5

-4

3

2

1

The current allocation is:

Sirin: (3)
Utility : -1
Ulle:

Utility : 1

Example of the egal-sequential algorithm

ExAMPLE: Let us consider two agents with the following preferences

-6

5

-4

3

2

1

The current allocation is:

Sirin: 3
Utility: 0

Ulle:

$$
\text { Utility : } 1
$$

Existence results for GEF1 allocations

With ternary symmetric preferences

Ternary symmetric preferences

Definition:

An agent $i \in \mathcal{N}$ has ternary symmetric preferences if her preferences are additive and there exists $\alpha_{i} \in \mathbb{R}_{>0}$ such that:

$$
\forall o \in \mathcal{O}, u_{i}(o) \in\left\{-\alpha_{i}, 0, \alpha_{i}\right\}
$$

Ternary symmetric preferences

Definition:

An agent $i \in \mathcal{N}$ has ternary symmetric preferences if her preferences are additive and there exists $\alpha_{i} \in \mathbb{R}_{>0}$ such that:

$$
\forall o \in \mathcal{O}, u_{i}(o) \in\left\{-\alpha_{i}, 0, \alpha_{i}\right\}
$$

Example:

1

-1

-1
-3
-3
-5
-5

1
3
5

Ulle	1	-1
Sirin	3	-3
Arthur	-5	-5

Arthur -5

GEF1 with ternary symmetric preferences

Lemma:
Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with goods and bad such that the preferences are ternary symmetric. Every allocation $\pi \in$ $\Pi(\mathcal{O}, \mathcal{N})$ that is leximin-optimal also satisfies GEF1.

The ternary flow algorithm

Lemma:

An allocation leximin-optimal can be computed in polynomial time.

The ternary flow algorithm

Input: An instance $\left.I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right)\right\rangle$ where preferences are ternary symmetric.
Output: $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ an leximin-optimal allocation
$O^{+}=\left\{o \in \mathcal{O}: \max _{i} u_{i}(o)>0\right\}$
$O^{0}=\left\{o \in \mathcal{O}: \max _{i} u_{i}(o)=0\right\}$
$O^{-}=\left\{o \in \mathcal{O}: \max _{i} u_{i}(o)<0\right\}$
Consider new utilities: $\forall i \in \mathcal{N}, \forall o \in O^{+}, u_{i}^{\prime}(o)=\left\{\begin{array}{l}1 \text { si } u_{i}(o)=1, \\ 0 \text { sinon }\end{array}\right.$ $\pi \leftarrow$ result of the Nash flow algorithm on $\left\langle\mathcal{N}, O^{+},\left(u_{i}^{\prime}\right)_{i \in \mathcal{N}}\right\rangle$. for $o \in O^{-}$do

Allocate o to $i^{*} \in \arg \max _{i \in \mathcal{N}} u\left(\pi_{i}\right)$
for $o \in O^{0}$ do
Allocate o to an agent i^{*} such that $u_{i^{*}}(o)=0$.
return π

GEF1 with ternary symmetric preferences

Theorem:

Let $I=\left\langle\mathcal{N}, \mathcal{O},\left(u_{i}\right)_{i \in \mathcal{N}}\right\rangle$ be an instance with goods and bad such that the preferences are ternary symmetric. An allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfying GEF1 always exists and can be computed in polynomial time.

Example of the ternary flow algorithm

EXAMPLE: Let us consider three agents with the following preferences:

We have then :

$$
O^{+}: ब \quad O^{0}: 8 \quad O^{-} \text {: } 9
$$

-1
-3
$5 \quad-5$

0

1
-3
3
-5
5

Example of the ternary flow algorithm - New preferences

EXAMPLE: Consider the following new preferences for items in O^{+} used for the Nash flow algorithm [8] :

Ulle	1	1	1
Sirin	1	0	1
Arthur	0	1	1

[8] Darmann and Schauer "Maximizing Nash product social welfare in allocating indivisible goods" (2015)

Example of the ternary flow algorithm - Nash flow

Example:

©

Example of the ternary flow algorithm - Nash flow

Example:

Example of the ternary flow algorithm - Nash flow

ExAmple:

Example of the ternary flow algorithm - Nash flow

Example:

Example of the ternary flow algorithm - Nash flow

Example:

Example of the ternary flow algorithm - Final allocation

ExAMPLE: The partial allocation obtained is:

Sirin: \oplus	Arthur: 0	Ulle: (C
Utility : 3	Utility : 5	Utility : 1

Example of the ternary flow algorithm - Final allocation

ExAMPLE: The partial allocation obtained is:

Sirin: © Arthur:	Ulle:	
Utility : 3	Utility : 5	Utility : 1

We allocate the final items to get:

Sirin: © Θ

Utility: 0

Arthur:
Utility: 0

Ulle: © 9
Utility: 1

Existence results for GEF1 allocations

Summary on existence results

Taxonomy of fairness criteria with existence results

6. Conclusion

Conclusion

We have...

- ... introduced a new fairness criteria for groups of agents when there are goods and bads,
- ... presented its links with common fairness criteria,
- ... given some existence results on classical restricted domains.

Conclusion

We have...

- ... introduced a new fairness criteria for groups of agents when there are goods and bads,
- ... presented its links with common fairness criteria,
- ... given some existence results on classical restricted domains.

We still need to ...

- ... find a general result for GEF1 with additive preferences,
- ... study the "up to any item" relaxation of GEF, namely GEFX, with the perspective of EFX,
- ... extend other fairness criteria to groups of agents.

Conclusion

The End

