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What is Participatory Budgeting

• Participatory Budgeting is a relatively new democratic

process, in which citizens can decide how (parts of) their

city’s budget is spend.

• Invented in 1989 by the worker’s party in Porto Alegre, Brazil.

• Today, it is used in more than 1500 cities, including (parts of)

Amsterdam.
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Participatory Budgeting in Amsterdam

Website: https://buurtbudget.amsterdam.nl/
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What is Participatory Budgeting

• Participatory Budgeting is usually a two stage process:

• First, citizens propose projects.

• Secondly, the citizens vote on which projects should be

implemented.

• In recent years, researchers from the area of COMSOC started

studying voting rules for the second stage more closely.
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What is (Approval-Based) Participatory Budgeting
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A formal model for Participatory Budgeting

We consider approval based Participatory Budgeting:

• A set of agents N, a set of projects P and a budget limit b.

• For every agent i , the set of projects Ai ⊆ P that i approves.

• A cost function c : P → R+.

We call a bundle of projects W ⊆ P. . .

. . . feasible if ∑
p∈W

c(p) ≤ b.

. . . exhaustive if for all p∗ ∈ P \W we have

c(p∗) +
∑
p∈W

c(p) > b.
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PB vs. approval-based multiwinner voting

• PB instances in which all projects have the same cost are

equivalent to approval based multiwinner voting. We call this

the unit-cost case.

• When we talk about the unit-cost case, we assume w.l.o.g.

that all projects have cost 1.

• We can consider PB as “weighted” multiwinner voting.

• Observe: In multiwinner voting exhaustiveness is essentially

always required!
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PB rules

• A PB rule R is a function that maps a PB instance (A, c , b)

to a feasible bundle R(A, c , b).

• We say a PB rule is exhaustive if its output is always

exhaustive.
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An example PB instance

p1 p2 p3 p4 p5

c(·) 8 8 5 5 2

1 3 3 3 × ×
2 3 3 3 × ×
3 3 3 3 × ×
4 3 × × 3 ×
5 × 3 × 3 ×
6 3 × × × 3

7 × × × × 3

# of app. 5 4 3 2 2

• b = 14

• Most common PB rule is
Greedy approval:

• Take most approved

project first

• Remove projects which

are no longer affordable

• Take most approved

project among the

remaining projects

• Repeat until no further

project is affordable.

• Winning bundle in example:

{p1, p3}
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A problematic PB instance

p1 p2 p3 p4 p5

c(·) 8 8 5 5 2

1 3 3 3 × ×
2 3 3 3 × ×
3 3 3 3 × ×
4 × × × 3 ×
5 × × × 3 ×
6 × × × × 3

7 × × × × 3

# of app. 3 3 3 2 2

• b = 14

• Most common PB rule is

Greedy approval.

• Winning bundle in example:

{p1, p3} or {p2, p3}.
• 1, 2, 3 are not even a

majority, but nevertheless

only their projects are

funded!

9



Justified representation in PB

• Fairer PB rules are needed!

• Natural idea: Lift proportionality axioms and proportional

rules from multiwinner voting to PB.

• In this lecture, we will try to lift the axiom EJR and the rule

MES to the PB setting.

• In doing so, we will encounter three problems:

• Cohesive groups need to be redefined.

• We need to reason about the satisfaction of an agent.

• Problems that were easy in MWV become intractable.
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Reminder: Cohesive Groups in MWV

`-Cohesive Groups

A group of agents N ′ ⊆ N is called `-cohesive if |N ′| ≥ `n/k and

|
⋂

i∈N′ Ai | ≥ `.
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A problematic PB instance

p1 p2 p3 p4 p5

c(·) 8 8 5 5 2

1 3 3 3 × ×
2 3 3 3 × ×
3 3 3 3 × ×
4 × × × 3 ×
5 × × × 3 ×
6 × × × × 3

7 × × × × 3

# of app. 3 3 3 2 2

• b = 14

• 4 and 5 represent 2/7 of the

agents and agree on projects

worth more than 2/7 of the

budget.

• They have no project that

they can afford from 2/7 of

the budget.
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T -Cohesive Groups

`-Cohesive Groups

A group of agents N ′ ⊆ N is called `-cohesive if |N ′| ≥ `n/k and

|
⋂

i∈N′ Ai | ≥ `.

T -Cohesive Groups

Let T ⊆ P be a set of projects. Then a group of agents N ′ ⊆ N

is called T -cohesive if c(T ) ≤ b · |N′|/n and T ⊆
⋂

i∈N′ Ai .
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A problematic PB instance

p1 p2 p3 p4 p5

c(·) 8 8 5 5 2

1 3 3 3 × ×
2 3 3 3 × ×
3 3 3 3 × ×
4 × × × 3 ×
5 × × × 3 ×
6 × × × × 3

7 × × × × 3

# of app. 3 3 3 2 2

• b = 14

• 6 and 7 are {p5}-cohesive.

• 4 and 5 are not

{p4}-cohesive as

c({p4} > 14 · 2/7 = 4
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`-cohesiveness vs. T -cohesiveness

Proposition

Let (A, b, c) be a unit-cost PB instance. Then a group of agents

N ′ is `-cohesive if and only if there is a set T ⊆ P with c(T ) = `

for which N ′ is T -cohesive.

• Assume N ′ is `-cohesive.

• Then |
⋂

i∈N′ Ai | ≥ `.
• Let T be ` arbitrary projects from |

⋂
i∈N′ Ai |.

• Then c(T ) = ` ≤ b · |N′|/n and T ⊆
⋂

i∈N′ Ai .

• Hence N ′ is T -cohesive.

• Assume N ′ is T -cohesive and c(T ) = `.

• Then ` = c(T ) ≤ b · |N′|/n and T ⊆
⋂

i∈N′ Ai .

• Hence |
⋂

i∈N′ Ai | ≥ c(T ) = |T | = ` and |N ′| ≥ `n/b.

• Hence N ′ is `-cohesive.
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Reminder: EJR in multiwinner voting

EJR

A committee W ⊆ C of size k satisfies EJR if for every

` ∈ {1, . . . , k} and every `-cohesive group N ′, there exists a

i ∈ N ′ such that |Ai ∩W | ≥ `.
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Satisfaction of an agent

The three most common options to model an agents satisfaction:

• Count the number of approved projects: µ#i (W ) = |Ai ∩W |.
• Cost of approved projects: µci (W ) = c(Ai ∩W ).

• Assume that agents provide an (additive) cardinal utility µi (p)

for each project p: µi (W ) =
∑

p∈W µi (p).
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Reasons against counting number of projects

Count the number of approved projects: µ#i (W ) = |Ai ∩W |.

• Difference in cost between projects can be huge.

• Particularly problematic when we are concerned with fairness:

In example below {p1, p2} and {p1, p3} would be considered

equally fair.

p1 p2 p3

c(·). 50 50 1

1 3 × ×
2 × 3 3
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Reasons against taking cost of projects

Cost of approved projects: µci (W ) = c(Ai ∩W ).

• Implementing the same project in different locations might

produce different cost. No reason to assume that this leads to

a change in satisfaction.

• Higher cost might lead to “diminishing marginal returns”.

• Rules based on this satisfaction principle often don’t satisfy

“discount monotonicity”, i.e., making a winning project

cheaper might lead to the project not winning anymore.

Observation: Greedy approval is implicitly based on this

assumption.
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Reasons against eliciting cardinal utilities

Assume that agents provide an (additive) cardinal utility µi (p) for

each project p: µi (W ) =
∑

p∈W µi (p).

• Places a high cognitive load on the agents.

• Interpersonal comparison between different cardinal utilities is

problematic.

• Additivity is still a very strong assumption.
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Possible solutions (Work in progress)

• Define a general theory of “approval-based” satisfaction

functions. (Work in progress together with Markus Brill,

Martin Lackner, Stefan Forster and Jannik Peters).

• Define fairness without using the concept of satisfaction.

(Work in progress together with Simon Rey, Martin Lackner

and Ulle Endriss; possible topic for a student presentation)

For this talk we focus on µ#i and µci . Cardinal utilities are a

possible topic for a student presentation.
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EJR-µ#
i

EJR

A committee W ⊆ C of size k satisfies EJR if for every

` ∈ {1, . . . , k} and every `-cohesive group N ′, there exists a

i ∈ N ′ such that |Ai ∩W | ≥ `.

EJR-µ#i

A bundle W ⊆ P satisfies EJR-µ#i if for every T ⊆ P and every

T -cohesive group N ′, there exists a i ∈ N ′ such that

|Ai ∩W | ≥ |T |.

EJR and EJR-µ#i are equivalent in the unit-cost case. This follows

directly from the equivalence of `- and T -cohesiveness in the

unit-cost case.
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Satisfying EJR-µ#
i

We can naturally adapt MES to the PB setting:

• Every agent starts with a budget of b/n.

• The price of project p is c(p).

• A project p is α-affordable in round t if∑
i∈N;p∈Ai

minα, bi (t) ≥ c(p)

• In every round, the project that is α-affordable for the

smallest α is selected.

Theorem

MES satisfies EJR-µ#i .
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EJR-µc
i

EJR-µ#i

A bundle W ⊆ P satisfies EJR-µ#i if for every T ⊆ P and every

T -cohesive group N ′, there exists a i ∈ N ′ such that

|Ai ∩W | ≥ |T |.

EJR-µci
A bundle W ⊆ P satisfies EJR-µci if for every T ⊆ P and every

T -cohesive group N ′, there exists a i ∈ N ′ such that

c(Ai ∩W ) ≥ c(T ).

EJR, EJR-µ#i and EJR-µci are equivalent in the unit-cost case, as

|S | = c(S) for all S ⊆ P in unit-cost instances.
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EJR-µc
i vs. EJR-µ#

i

In general, EJR-µci and EJR-µ#i are incompatible. Consider the

following instance with b = 5.

p1 p2 p3 p4

c(·) 5 1 1 1

1 3 3 3 3

Then, only {p1} satisfies EJR-µci while only {p2, p3, p4} satisfies

EJR-µ#i
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Complexity woes

Theorem

If there is a polynomial time computable PB rule that satisfies

EJR-µci , then P = NP.
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Complexity woes: Proof

• Consider the problem Subset Sum: Given a set of positive

integers S and an integer t, is there a subset S ′ ⊆ S such that∑
s∈S ′ s = t?

• Subset Sum is known to be NP-complete.

• Given a Subset Sum instance (S , t), construct a PB
instance with

• 1 agent,

• one project ps for each s ∈ S

• c(ps) = s and b = t.

• Use PB rule to find a bundle W that satisfies EJR-µci in

polynomial time.

• (S , t) is a positive instance if and only if c(W ) = t.
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Satisfiability of EJR-µc
i

Greedy Cohesive for Cost

• Initialize W and N∗ as empty sets.

• While exists N ′ ⊆ N \ N∗ and T ⊆ P \W , s.t. N ′ is
T -cohesive:

• Select N ′′ ⊆ N \ N∗ and T ′ ⊆ P \W with maximal cost such

that N ′′ is T ′-cohesive.

• Add T ′ to W and N ′′ to N∗.

Theorem

Greedy Cohesive for Cost satisfies EJR-µci .

Observe: Greedy Cohesive for Cost requires exponential runtime.
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Satisfiability of EJR-µc
i : Proof Idea

Theorem

Greedy Cohesive for Cost satisfies EJR-µci .

Proof idea

• Let N ′ be a T -cohesive group.

• First case: N ′ was “picked” by the algorithm in some round.

Then EJR-µci is satisfied by construction.

• Second case: N ′ was never picked.

• Then, either all projects in T have been picked. . .

• . . . or at least one agent i ∈ N ′ has been part of another

group that has been picked.

• By the maximality criterion for picking groups, this implies

c(Ai ∩W ) ≥ c(T ).
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Relaxing EJR-µc
i

EJR-µci
A bundle W ⊆ P satisfies EJR-µci if for every T ⊆ P and every

T -cohesive group N ′, there exists a i ∈ N ′ such that

c(Ai ∩W ) ≥ c(T ).

EJR-µci up to one

A bundle W ⊆ P satisfies EJR-µci up to one if for every T ⊆ P

and every T -cohesive group N ′, there exists a i ∈ N ′ such that

either c(Ai ∩W ) ≥ c(T ) or there exists a p ∈ P \W such that

c(Ai ∩ (W ∪ {p})) > c(T ).

In the unit cost case, we have c(Ai ∩W ) ≥ c(T ) iff

c(Ai ∩ (W ∪ {p})) > c(T ). Therefore, EJR, EJR-µ#i , EJR-µci and

EJR-µci up to one are equivalent in the unit-cost case.
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Satisfying EJR-µc
i up to one

We adapt MES to take cost into account. MES[µci ] is defined as

• Every agent starts with a budget of b/n.

• The price of project p is c(p).

• A project p is α-affordable in round t if∑
i∈N;p∈Ai

minα · c(p), bi (t) ≥ c(p)

• In every round, the project that is α-affordable for the

smallest α is selected.

Theorem

MES[µci ] satisfies EJR-µci up to one.
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Satisfying EJR-µc
i up to one: Proof idea

• First observe that 1/α is the satisfaction per money of an

agent that pays “full price”.

• Let N ′ be a T -cohesive group.

• Assume round k is the first round after which an agent i in N ′

could not pay “in full” for a project p in T . Let W ∗ be the

projects selected in rounds 1 to k.

• To get Ai ∩ (W ∗ ∪ {p}) agent i would need to spend more

than b/n.

• Before round k , all agents in N ′ could pay for all projects in T

in full. Hence projects in W ∗ give at least as much

satisfaction per money as agents in N ′ get by buying the

projects in T by themselves.

• It follows that c(Ai ∩ (W ∗ ∪ {p})) > c(T ).

32



Unpublished bonus result

EJR-µci up to any

A bundle W ⊆ P satisfies EJR-µci up to any if for every T ⊆ P

and every T -cohesive group N ′, there exists a i ∈ N ′ such that

either c(Ai ∩W ) ≥ c(T ) or for every p ∈ P \W we have

c(Ai ∩ (W ∪ {p})) > c(T ).

Theorem

MES[µci ] satisfies EJR-µci up to any.
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Summary

• PB is a generalization of mulitwinner voting.

• We can lift proportionality axioms like EJR from multiwinner

voting to PB.

• In order to talk about proportionality, we have to fix a

satisfaction function for the agents.

• If we assume µ#i describes agents’ satisfaction, then we can

achieve EJR-µ#i in polynomial time using MES.

• If we assume µci describes agents’ satisfaction, then we can

only achieve EJR-µci up to any in polynomial time using

MES[µci ].
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