Beyond Multiwinner Voting: Participatory Budgeting

Jan Maly June 10, 2022

- Participatory Budgeting is a relatively new democratic process, in which citizens can decide how (parts of) their city's budget is spend.
- Invented in 1989 by the worker's party in Porto Alegre, Brazil.
- Today, it is used in more than 1500 cities, including (parts of) Amsterdam.

Participatory Budgeting in Amsterdam

Website: https://buurtbudget.amsterdam.nl/

- Participatory Budgeting is usually a two stage process:
 - First, citizens propose projects.
 - Secondly, the citizens vote on which projects should be implemented.
- In recent years, researchers from the area of COMSOC started studying voting rules for the second stage more closely.

What is (Approval-Based) Participatory Budgeting

A formal model for Participatory Budgeting

We consider approval based Participatory Budgeting:

- A set of agents N, a set of projects P and a budget limit b.
- For every agent *i*, the set of projects $A_i \subseteq P$ that *i* approves.
- A cost function $c: P \to \mathbb{R}^+$.

We call a bundle of projects $W \subseteq P...$

... feasible if

$$\sum_{p\in W} c(p) \leq b.$$

 \ldots exhaustive if for all $p^* \in P \setminus W$ we have

$$c(p^*) + \sum_{p \in W} c(p) > b.$$

- PB instances in which all projects have the same cost are equivalent to approval based multiwinner voting. We call this the unit-cost case.
- When we talk about the unit-cost case, we assume w.l.o.g. that all projects have cost 1.
- We can consider PB as "weighted" multiwinner voting.
- Observe: In multiwinner voting exhaustiveness is essentially always required!

- A PB rule R is a function that maps a PB instance (A, c, b) to a feasible bundle R(A, c, b).
- We say a PB rule is exhaustive if its output is always exhaustive.

An example PB instance

	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4	<i>p</i> ₅
$c(\cdot)$	8	8	5	5	2
1	✓	1	1	×	×
2	1	✓	✓	×	×
3	1	1	\checkmark	×	×
4	1	×	×	✓	×
5	×	1	×	✓	×
6	1	×	×	×	\checkmark
7	×	×	×	×	 Image: A start of the start of
# of app.	5	4	3	2	2

- *b* = 14
- Most common PB rule is Greedy approval:
 - Take most approved project first
 - Remove projects which are no longer affordable
 - Take most approved project among the remaining projects
 - Repeat until no further project is affordable.
- Winning bundle in example: {p₁, p₃}

A problematic PB instance

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	p_5
$c(\cdot)$	8	8	5	5	2
1	✓	1	1	×	×
2	1	1	1	×	×
3	1	1	1	×	×
4	\times	\times	×	1	×
5	\times	\times	×	1	×
6	\times	\times	\times	×	1
7	×	×	×	×	✓
# of app.	3	3	3	2	2

• *b* = 14

- Most common PB rule is Greedy approval.
- Winning bundle in example: {p₁, p₃} or {p₂, p₃}.
- 1, 2, 3 are not even a majority, but nevertheless only their projects are funded!

Justified representation in PB

- Fairer PB rules are needed!
- Natural idea: Lift proportionality axioms and proportional rules from multiwinner voting to PB.
- In this lecture, we will try to lift the axiom EJR and the rule MES to the PB setting.
- In doing so, we will encounter three problems:
 - Cohesive groups need to be redefined.
 - We need to reason about the satisfaction of an agent.
 - Problems that were easy in MWV become intractable.

ℓ-Cohesive Groups

A group of agents $N' \subseteq N$ is called ℓ -cohesive if $|N'| \ge \ell^{n/k}$ and $|\bigcap_{i \in N'} A_i| \ge \ell$.

A problematic PB instance

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	p_5
$c(\cdot)$	8	8	5	5	2
1	✓	1	1	×	×
2	1	1	1	×	×
3	1	✓	✓	×	×
4	×	×	×	1	×
5	\times	\times	×	1	×
6	\times	\times	×	×	1
7	×	×	×	×	✓
# of app.	3	3	3	2	2

- *b* = 14
- 4 and 5 represent 2/7 of the agents and agree on projects worth more than 2/7 of the budget.
- They have no project that they can afford from 2/7 of the budget.

*l***-Cohesive Groups**

A group of agents $N' \subseteq N$ is called ℓ -cohesive if $|N'| \ge \ell^{n/k}$ and $|\bigcap_{i \in N'} A_i| \ge \ell$.

*T***-Cohesive Groups**

Let $T \subseteq P$ be a set of projects. Then a group of agents $N' \subseteq N$ is called *T*-cohesive if $c(T) \leq b \cdot |N'|/n$ and $T \subseteq \bigcap_{i \in N'} A_i$.

A problematic PB instance

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	p_5
$c(\cdot)$	8	8	5	5	2
1	✓	1	1	×	×
2	1	1	✓	×	\times
3	1	✓	✓	×	×
4	\times	\times	\times	1	\times
5	\times	\times	\times	✓	×
6	×	×	×	×	1
7	×	×	×	×	✓
# of app.	3	3	3	2	2

- *b* = 14
- 6 and 7 are $\{p_5\}$ -cohesive.
- 4 and 5 are not $\{p_4\}$ -cohesive as $c(\{p_4\} > 14 \cdot 2/7 = 4$

Proposition

Let (A, b, c) be a unit-cost PB instance. Then a group of agents N' is ℓ -cohesive if and only if there is a set $T \subseteq P$ with $c(T) = \ell$ for which N' is T-cohesive.

- Assume N' is ℓ -cohesive.
- Then $|\bigcap_{i\in N'}A_i| \ge \ell$.
- Let T be ℓ arbitrary projects from $|\bigcap_{i \in N'} A_i|$.
- Then $c(T) = \ell \leq b \cdot |N'|/n$ and $T \subseteq \bigcap_{i \in N'} A_i$.
- Hence N' is T-cohesive.
- Assume N' is T-cohesive and $c(T) = \ell$.
- Then $\ell = c(T) \leq b \cdot |N'|/n$ and $T \subseteq \bigcap_{i \in N'} A_i$.
- Hence $|\bigcap_{i\in N'}A_i| \ge c(T) = |T| = \ell$ and $|N'| \ge \ell^n/b$.
- Hence N' is ℓ -cohesive.

EJR

A committee $W \subseteq C$ of size k satisfies EJR if for every $\ell \in \{1, \ldots, k\}$ and every ℓ -cohesive group N', there exists a $i \in N'$ such that $|A_i \cap W| \ge \ell$.

The three most common options to model an agents satisfaction:

- Count the number of approved projects: $\mu_i^{\#}(W) = |A_i \cap W|$.
- Cost of approved projects: $\mu_i^c(W) = c(A_i \cap W)$.
- Assume that agents provide an (additive) cardinal utility μ_i(p) for each project p: μ_i(W) = Σ_{p∈W} μ_i(p).

Count the number of approved projects: $\mu_i^{\#}(W) = |A_i \cap W|$.

- Difference in cost between projects can be huge.
- Particularly problematic when we are concerned with fairness: In example below {p₁, p₂} and {p₁, p₃} would be considered equally fair.

	p_1	<i>p</i> ₂	<i>p</i> ₃
$c(\cdot).$	50	50	1
1	1	×	×
2	×	1	1

Cost of approved projects: $\mu_i^c(W) = c(A_i \cap W)$.

- Implementing the same project in different locations might produce different cost. No reason to assume that this leads to a change in satisfaction.
- Higher cost might lead to "diminishing marginal returns".
- Rules based on this satisfaction principle often don't satisfy "discount monotonicity", i.e., making a winning project cheaper might lead to the project not winning anymore.

Observation: Greedy approval is implicitly based on this assumption.

Assume that agents provide an (additive) cardinal utility $\mu_i(p)$ for each project p: $\mu_i(W) = \sum_{p \in W} \mu_i(p)$.

- Places a high cognitive load on the agents.
- Interpersonal comparison between different cardinal utilities is problematic.
- Additivity is still a very strong assumption.

Possible solutions (Work in progress)

- Define a general theory of "approval-based" satisfaction functions. (Work in progress together with Markus Brill, Martin Lackner, Stefan Forster and Jannik Peters).
- Define fairness without using the concept of satisfaction.
 (Work in progress together with Simon Rey, Martin Lackner and Ulle Endriss; possible topic for a student presentation)

For this talk we focus on $\mu_i^{\#}$ and μ_i^c . Cardinal utilities are a possible topic for a student presentation.

EJR

A committee $W \subseteq C$ of size k satisfies EJR if for every $\ell \in \{1, \ldots, k\}$ and every ℓ -cohesive group N', there exists a $i \in N'$ such that $|A_i \cap W| \ge \ell$.

EJR- $\mu_i^{\#}$

A bundle $W \subseteq P$ satisfies $\text{EJR-}\mu_i^{\#}$ if for every $T \subseteq P$ and every T-cohesive group N', there exists a $i \in N'$ such that $|A_i \cap W| \ge |T|$.

EJR and EJR- $\mu_i^{\#}$ are equivalent in the unit-cost case. This follows directly from the equivalence of ℓ - and T-cohesiveness in the unit-cost case.

Satisfying EJR- $\mu_i^{\#}$

We can naturally adapt MES to the PB setting:

- Every agent starts with a budget of b/n.
- The price of project p is c(p).
- A project p is α -affordable in round t if

$$\sum_{i\in N; p\in A_i} \min \alpha, b_i(t) \ge c(p)$$

 In every round, the project that is α-affordable for the smallest α is selected.

Theorem

MES satisfies EJR- $\mu_i^{\#}$.

EJR- μ_i^c

EJR- $\mu_i^{\#}$

A bundle $W \subseteq P$ satisfies $\text{EJR-}\mu_i^{\#}$ if for every $T \subseteq P$ and every T-cohesive group N', there exists a $i \in N'$ such that $|A_i \cap W| \ge |T|$.

EJR- μ_i^c

A bundle $W \subseteq P$ satisfies $EJR-\mu_i^c$ if for every $T \subseteq P$ and every T-cohesive group N', there exists a $i \in N'$ such that $c(A_i \cap W) \ge c(T)$.

EJR, EJR- $\mu_i^{\#}$ and EJR- μ_i^c are equivalent in the unit-cost case, as |S| = c(S) for all $S \subseteq P$ in unit-cost instances.

In general, EJR- μ_i^c and EJR- $\mu_i^{\#}$ are incompatible. Consider the following instance with b = 5.

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄
$c(\cdot)$	5	1	1	1
1	1	1	1	1

Then, only $\{p_1\}$ satisfies EJR- μ_i^c while only $\{p_2,p_3,p_4\}$ satisfies EJR- $\mu_i^{\#}$

Theorem

If there is a polynomial time computable PB rule that satisfies EJR- μ_i^c , then P = NP.

Complexity woes: Proof

- Consider the problem SUBSET SUM: Given a set of positive integers S and an integer t, is there a subset S' ⊆ S such that ∑_{s∈S'} s = t?
- SUBSET SUM is known to be NP-complete.
- Given a SUBSET SUM instance (*S*, *t*), construct a PB instance with
 - 1 agent,
 - one project p_s for each $s \in S$
 - $c(p_s) = s$ and b = t.
- Use PB rule to find a bundle W that satisfies EJR- μ_i^c in polynomial time.
- (S, t) is a positive instance if and only if c(W) = t.

Greedy Cohesive for Cost

- Initialize W and N^* as empty sets.
- While exists $N' \subseteq N \setminus N^*$ and $T \subseteq P \setminus W$, s.t. N' is *T*-cohesive:
 - Select N'' ⊆ N \ N* and T' ⊆ P \ W with maximal cost such that N'' is T'-cohesive.
 - Add T' to W and N'' to N^* .

Theorem

Greedy Cohesive for Cost satisfies $EJR-\mu_i^c$.

Observe: Greedy Cohesive for Cost requires exponential runtime.

Satisfiability of EJR- μ_i^c : Proof Idea

Theorem

Greedy Cohesive for Cost satisfies $EJR-\mu_i^c$.

Proof idea

- Let N' be a T-cohesive group.
- First case: N' was "picked" by the algorithm in some round. Then EJR-μ^c_i is satisfied by construction.
- Second case: N' was never picked.
- Then, either all projects in T have been picked...
- ... or at least one agent i ∈ N' has been part of another group that has been picked.
- By the maximality criterion for picking groups, this implies c(A_i ∩ W) ≥ c(T).

Relaxing EJR- μ_i^c

EJR- μ_i^c

A bundle $W \subseteq P$ satisfies $EJR-\mu_i^c$ if for every $T \subseteq P$ and every T-cohesive group N', there exists a $i \in N'$ such that $c(A_i \cap W) \ge c(T)$.

EJR- μ_i^c up to one

A bundle $W \subseteq P$ satisfies $\text{EJR}-\mu_i^c$ up to one if for every $T \subseteq P$ and every T-cohesive group N', there exists a $i \in N'$ such that either $c(A_i \cap W) \ge c(T)$ or there exists a $p \in P \setminus W$ such that $c(A_i \cap (W \cup \{p\})) > c(T)$.

In the unit cost case, we have $c(A_i \cap W) \ge c(T)$ iff $c(A_i \cap (W \cup \{p\})) > c(T)$. Therefore, EJR, EJR- $\mu_i^{\#}$, EJR- μ_i^{c} and EJR- μ_i^{c} up to one are equivalent in the unit-cost case.

We adapt MES to take cost into account. $MES[\mu_i^c]$ is defined as

- Every agent starts with a budget of b/n.
- The price of project p is c(p).

i

• A project p is α -affordable in round t if

$$\sum_{\substack{\in \mathcal{N}; p \in A_i}} \min lpha \cdot c(p), b_i(t) \geq c(p)$$

• In every round, the project that is α -affordable for the smallest α is selected.

Theorem

 $MES[\mu_i^c]$ satisfies EJR- μ_i^c up to one.

Satisfying EJR- μ_i^c up to one: Proof idea

- First observe that $1/\alpha$ is the satisfaction per money of an agent that pays "full price".
- Let N' be a T-cohesive group.
- Assume round k is the first round after which an agent i in N' could not pay "in full" for a project p in T. Let W* be the projects selected in rounds 1 to k.
- To get A_i ∩ (W^{*} ∪ {p}) agent i would need to spend more than b/n.
- Before round k, all agents in N' could pay for all projects in T in full. Hence projects in W* give at least as much satisfaction per money as agents in N' get by buying the projects in T by themselves.
- It follows that $c(A_i \cap (W^* \cup \{p\})) > c(T)$.

EJR- μ_i^c up to any

A bundle $W \subseteq P$ satisfies $\text{EJR}-\mu_i^c$ up to any if for every $T \subseteq P$ and every T-cohesive group N', there exists a $i \in N'$ such that either $c(A_i \cap W) \ge c(T)$ or for every $p \in P \setminus W$ we have $c(A_i \cap (W \cup \{p\})) > c(T)$.

Theorem

 $MES[\mu_i^c]$ satisfies EJR- μ_i^c up to any.

- PB is a generalization of mulitwinner voting.
- We can lift proportionality axioms like EJR from multiwinner voting to PB.
- In order to talk about proportionality, we have to fix a satisfaction function for the agents.
- If we assume $\mu_i^{\#}$ describes agents' satisfaction, then we can achieve EJR- $\mu_i^{\#}$ in polynomial time using MES.
- If we assume μ^c_i describes agents' satisfaction, then we can only achieve EJR-μ^c_i up to any in polynomial time using MES[μ^c_i].