Parameterized Complexity Theory and its Applications to Social Choice
 Kernelization Lower Bounds

Simon Rey and Ronald de Haan
ILLC, University of Amsterdam

Plan for today

</> Polynomial kernels
is Possible Winner for k-Approval
${ }^{c}$ Machinery to show lower bounds on kernels

$$
(x, k) \in Q \quad \text { if and only if } \quad\left(x^{\prime}, k^{\prime}\right) \in Q
$$

- A kernelization (algorithm) (or kernel) is a poly-time reduction from Q to itself, such that the output is of size $\leq g(k)$

Theorem ("FPT iff kernelization")
A parameterized problem $Q \subseteq \Sigma^{*} \times \mathbb{N}$ is fixed-parameter tractable if and only if it admits a kernelization algorithm.

Example: kernelization for Vertex Cover

■ Kernelization algorithm for Vertex Cover:
(a) Repeat the following two rules until you reach a fixpoint.

1 If $k>0$, and if there is a vertex v with degree $>k$, remove v and decrease k by one.

2 If there is an isolated vertex v, remove v.
(b) If the resulting graph G has more than k^{2} edges, return a trivial no-instance.
(c) Otherwise, return (G, k)

- Why are rules $\mathbf{1}$ and $\mathbf{2}$ and step (b) correct? ${ }^{\circ}$
- Why does this satisfy the requirements of a kernelization? Ol (1)
- By distinguishing different classes of functions $g(\cdot)$, we can group problems in FPT into different subclasses

Definition (polynomial kernel)

A kernelization is called a polynomial kernelization if the function $g(\cdot)$ bounding the size of the output is a polynomial function.

$$
\text { FPT }=\text { has kernel with any computable } g(\cdot)
$$

Example: Possible Winner for k-Approval

■ Possible Winner for k-Approval

- Input: A set C of candidates, $k \in \mathbb{N}$, a set of orderings over C (the votes), of which t are partial orders and the rest are linear orders, and some $c^{*} \in C$.
- Parameter: k, t
- Question: Can we complete the partial orders so that c^{*} becomes a winner under the k-Approval rule?

Betzler, N. On problem kernels for possible winner determination under the k-approval protocol. Proceedings of the International Symposium on Mathematical Foundations of Computer Science (MFCS). 2010.

Kernelization for Possible Winner for k-Approval

■ There is a kernelization algorithm for Possible Winner for k-Approval, parameterized by k and t

- Rule 1: fix c^{*} as high as possible in each partial ranking
- (.. more rules and more details ..)
- The bound $g(k)$ on the size of the kernelization is some 'highly exponential' function
(2) Can we improve this to a polynomial kernelization?

Can we prove whether some problem does not admit poly-size kernels?

- Yes, we can!

Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Computer and System Sciences 75(8), 423-434 (2009)

OR-Compositionality

$$
\left(x_{i}, k\right) \in Q \text { for some } i \in\{1, \ldots, t\} \quad \text { if and only if } \quad\left(y, k^{\prime}\right) \in Q
$$

- An $O R$-composition algorithm for Q is a poly-time reduction from an "OR-variant of $Q^{\prime \prime}$ to Q, such that $k^{\prime} \leq \operatorname{poly}(k)$

OR-Distillation

- An $O R$-distillation of L into R is a poly-time reduction from an "OR-variant of L " to R

Theorem

Let Q be a parameterized problem that has an $O R$-composition algorithm, whose unparameterized version is in NP. If Q has a polynomial kernel, then there is a distillation from the unparameterized version of Q to SAT.

- Distillation algorithm:

1 Take inputs x_{1}, \ldots, x_{t} for the unparameterized version of Q, and consider the corresponding parameters k_{1}, \ldots, k_{t}

2 For each $1 \leq \ell \leq \max k_{i}$, consider all inputs x_{i} for which $k_{i}=\ell$, and apply the composition on this subsequence of $\left(x_{i}, k_{i}\right)$'s—giving $\left(y_{1}, k_{1}^{\prime}\right), \ldots,\left(y_{r}, k_{r}^{\prime}\right)$
3 Then apply the polynomial kernel on each of $\left(y_{1}, k_{1}^{\prime}\right), \ldots,\left(y_{r}, k_{r}^{\prime}\right)$, giving $\left(z_{1}, k_{1}^{\prime \prime}\right), \ldots,\left(z_{r}, k_{r}^{\prime \prime}\right)$
4 Compute propositional formulas φ_{i} that each are satisfiable if and only if $\left(z_{i}, k_{i}^{\prime \prime}\right) \in Q$, and return $\bigvee_{i} \varphi_{i}$

Bring in the big guns..

> Theorem (Fortnow, Santhanam, 2011)
> If an NP-hard problem L admits an OR-distillation into some problem R, then NP \subseteq coNP/poly.

Theorem (Karp, Lipton, 1980)

If NP \subseteq coNP/poly, then the Polynomial Hierarchy (PH) collapses.

■ So assuming that the PH does not collapse, any NP-complete problem that admits an OR-composition does not admit a polynomial kernel.

Example of an OR-composition: Longest Path

- Longest Path, parameterized by k :
- Input: (G, k), where G is an undirected graph, and $k \in \mathbb{N}$
- Parameter: k
- Question: Is there a simple path in G of length at least k ?
- Longest Path admits an OR-composition
- $\overbrace{0}^{\circ} \mathrm{O}$ (10(1)

11 Take inputs $\left(G_{1}, k\right), \ldots,\left(G_{t}, k\right)$
2 Output ($G_{1} \dot{\cup} \cdots \dot{\cup} G_{t}, k$)

Composition for Possible Winner for k-Approval

Theorem (Betzler, 2010)

Possible Winner for k-Approval, parameterized by k and the number t of partial votes, admits an $O R$-composition.

Corollary (Betzler, 2010)

If Possible Winner for k-Approval, parameterized by k and the number t of partial votes, admits a polynomial kernel, then the PH collapses.

More general framework

■ Weaker assumptions:

- We required the inputs $\left(x_{1}, k\right), \ldots,\left(x_{t}, k\right)$ to have the same parameter value we can slightly relax this to: the inputs must be equivalent according to some equivalence relation \mathcal{R} (with some nice properties)
- Composition algorithms can be into another problem R
- It also works for AND- instead of OR-compositions (and -distillations).
- Stronger conclusions:
- Rule out compression algorithms: polynomial kernelization into another problem

Recap

</> Polynomial kernels
is Possible Winner for k-Approval
c Machinery to show lower bounds on kernels

- OR-compositions, OR-distillations
- in NP + OR-composition + poly-size kernel \Rightarrow OR-distillation
- OR-distillation + NP-hard \Rightarrow PH collapses

