
Treewidth

Simon Rey and Ronald de Haan

June Project

Institute for Logic, Language and Computation
University of Amsterdam

Simon Rey Treewidth 1 / 35

Further Parameterized Results

During the first lecture we presented several techniques to develop FPT algorithms. Today
we will focus on a specific parameter that has been extensively studied in the world of
parameterized complexity: the treewidth of a graph.

After giving some basic definitions, we will present some algorithmic results about comput-
ing the treewidth of a graph. Some examples on how to use such a parameter will then be
given. The lecture will be concluded by two further topics about treewidth.

Shall we?

Simon Rey Treewidth 2 / 35

Motivation

Graphs are among the most extensively studied mathematical structures in computer sci-
ence. Among the famous 21 NP-complete problems that Richard Karp introduced in his
seminal paper in 1972, 11 of them are about graphs.

Although most problems on graphs turn out to be hard to solve (e.g., NP-complete), many
are solvable in polynomial time when the input graph is a tree.

As newly appointed parametrized complexity expert which bell should that ring?

If some problems that are hard in general are easy on trees, let’s try to parameterize them
with a measure of how close to a tree the input graph is. That is the treewidth.

Simon Rey Treewidth 3 / 35

1. Tree Decomposition of a Graph and Treewidth

Tree Decomposition of a Graph and Treewidth

Definition

Tree Decomposition

Definition: Tree Decomposition
A tree decomposition of a graph G = 〈V , E〉 is a tree T = 〈VT , ET 〉 whose vertices,
called bags, are subsets of vertices of G (VT ⊆ 2V) such that:

Every vertex of G appear in at least on bag:
⋃

X∈VT
X = V ;

For every edge (u, v) ∈ E, there exists a bag X ∈ VT for which {u, v} ⊆ X;
For every vertex v ∈ V , the set {X ∈ VT | v ∈ X} is a connected subtree of T .

A graph G: Three possible tree decompositions of G:
1 2

3

4 5

6

7

8

T1

{1, . . . , 8}

T2

{1, 2, 3, 4, 5}

{2, 5, 6, 7, 8}
{2, 5}

T3

{1, 2, 3}

{3, 4, 5}
{2, 3, 5} {2, 5, 7}

{2, 6, 7}

{5, 7, 8}

Simon Rey Treewidth 4 / 35

Treewidth
As illustrated on the previous slide, to every graph correspond (potentially) several tree de-
compositions. Some decompositions are better than others, in particular when they involve
small bags. That is the idea behind the treewidth of a graph.

Definition: Treewidth
The treewidth of a graph G, denoted tw(G) is the minimum over all tree decomposi-
tions of G of the size of the largest bag minus 1 in the tree decomposition. Formally:

tw(G) = min
{

max
X∈VT

|X| − 1 | T = 〈VT , ET 〉 is a tree decomposition of G

}
.

1 2

3

4 5

6

7

8

The graph G has treewidth
tw(G) = 3 with the following
optimal tree decomposition.

{1, 2, 3}

{3, 4, 5}
{2, 3, 5} {2, 5, 7}

{2, 6, 7}

{5, 7, 8}

Simon Rey Treewidth 5 / 35

Classes with Bounded Treewidth

Let’s play: I give you a class of graphs, you me give a nice bound on its treewidth!

Trees? 1
Forests? 1
Cycle? 2
Complete graphs of size n? n− 1
Outerplanar graphs? 2

• • •

•

•
•

•

•

Simon Rey Treewidth 6 / 35

Tree Decomposition of a Graph and Treewidth

Computing a Tree Decomposition

An FPT Algorithm for the Treewidth

Let’s focus a bit on the problem of computing a tree decomposition.

Unsurprisingly, computing a tree decomposition amount to solving NP-hard problems.

Proposition:
Deciding whether G has treewidth tw(G) ≤ k, for a given k ∈N, is NP-complete.

What’s the reflex now when you see such a result? Let’s look for FPT algorithms!

Theorem: Bodlaender Algorithm’s
There exists an algorithm taking as input a graph G = 〈V , E〉 and an integer k ∈N

that runs in time kO(k3)× |V | and that either construct a tree decomposition of G of
width at most k or concludes that tw(G) > k. (327 = 7 625 597 484 987)

Approximation algorithms have been proposed with different trade-off in the exponents on
k and |V | such as: 3 + 2/3-approx. in O(23.6982kk3 × |V |2) or 5-approx. in 2O(k) × |V |.

Simon Rey Treewidth 7 / 35

An Attempt at Explaining How - An Obstacle to Small Treewidth

All algorithms computing tree decompositions are quite involved and long to explain. Let’s
sketch the structure of one of them for a graph G = 〈V , E〉.
First, we need to find what are interesting obstacle to having a small treewidth. Two sets of
vertices Y , Z ⊆ V of the same size are separable if there is a S ⊆ V of size |S| < |Y | = |Z|
such that there are no path from Y \ S to Z \ S when removing S from the graph. A set
X ⊆ V is k-linked if |X| ≥ k and X contains no separable subsets of size at most k.

Y ZS•

•

•

•

•

••

•

S separates Y and Z

Y Z•

•

•

•

•

••

•

Y and Z are not separable

X•

•

•

•

•

••

•

X is 3-linked

Proposition:
If G contains a (k + 1)-linked set of size at least 3k, then G has treewidth at least k.

Simon Rey Treewidth 8 / 35

An Attempt at Explaining How - Idea of the Algorithm

The algorithm we sketch will then ensure the following two points:
Either it finds a tree decomposition of width less than 4k

Or, it discovers a (k + 1)-linked set of size at least 3k witnessing that G has tw(G) ≥ k.

Good news: there exists an algorithm running in FPT time that decides whether a set of
vertices X ⊆ V is (k + 1)-linked and which produces a witness showing why not otherwise.

We will then construct a recursive algorithm that will break down the graph into several
bags that will form the tree decomposition. If at any steps it cannot find a suitable bag, it
will discover a (k + 1)-linked set of size at least 3k.

Simon Rey Treewidth 9 / 35

An Attempt at Explaining How - A Recursive Procedure

At a given step, the recursive process separates the graph G into several connected compo-
nents by removing a set of vertices (that are placed in a bag). The two following facts are
maintained at any intermediate step of the algorithm:

The current solution is a tree decomposition for the subgraph of G induced by U defined
as the union of all the bags that have been formed so far;
Each connected component C of the graph induced by V \U has at most 3k neighbors
in U and there is a single bag Vt containing all the neighbors.

What is happening inside an intermediate step is roughly the following:
Consider a given connected component C of the graph induced by V \U ;
Call X the set of neighbors of C (vertices with an edge linking to X);
When |X| < 3k there is an easy way to extend the tree decomposition;
Otherwise, if |X| = 3k we need to test whether X is (k + 1)-linked;
If so, we can terminate the algorithm as we know tw(G) ≥ k;
Otherwise, we extend the tree decomposition with the witness that it is not the case.

Simon Rey Treewidth 10 / 35

2. Treewidth and Dynamic Programming

3-Colorability

3-Colorability

Instance: A graph G = 〈V , E〉
Parameter: k = tw(G) the treewidth of G
Question: Is there a mapping c : V → {1, 2, 3} such that for all

v1, v2 ∈ V , v1 6= v2,we have c(v1) 6= c(v2)?

1 2

3

4 5

6

7

8

Let’s show that the 3-Colorability problem is fixed-parameter tractable when parameterized
with the treewidth of the input graph.

Proposition:
For every graph G = 〈V , E〉, the 3-Colorability problem can be soled in time
2kO(1) × |V | where k = tw(G) if the treewidth of G.

Simon Rey Treewidth 11 / 35

3-Colorability - The Algorithm

We devise a dynamic programming algorithm for 3-Colorability. For an input graph G =
〈V , E〉 of treewidth k = tw(G), the first step consists in computing a tree decomposition
T = 〈VT , ET 〉 of width at most k using Bodleander’s algorithm.

We then recursively compute partial solutions of the 3-Colorability going from the leaves
of T to its root. For any vertex X ∈ VT we compute two sets:

Col(X): the set of all 3-coloring of the subgraph of G induced by the vertices in X;
Can be computed in time O(3k+1 × k2) by going through all possible 3-colorings.

ExtCol(X): the set of all 3-coloring in Col(X) that can be extended into a 3-coloring
of the subgraph of G induced by the vertices in X and in all of its children in T .
If X is a leaf of T , then ExtCol(X) = Col(X). Otherwise, ExtCol(X) is the set of all

the c ∈ Col(X) such that for all children Xi of X in T , there exists ci ∈ ExtCol(Xi) that
coincides with c on vertices Xi ∩X. This can be computed in time O(32(k+1) × k).

Since |VT | ≤ |V |, the overall running is 2kO(1) × |V |. �

Simon Rey Treewidth 12 / 35

Treewidth and Dynamic Programming

The algorithm we have presented in the previous example can be converted into a general
strategy to proof FPT results when parameterized by the treewidth. The steps are:

Computing a tree decomposition using Bodleander’s algorithm;
Developing a dynamic programming technique to obtain partial solutions for each bag
in the tree;
Finding an efficient way to combine the partial solutions into a global one.

This can be turned into the so called win/win approach. Can’t wait to know what this is
it right?

Simon Rey Treewidth 13 / 35

3. The Win/Win Approach: Treewidth Reductions

In Both Cases, You Win

Through the use of dynamic programming, we presented a nice technique to develop FPT
algorithms for instance of bounded treewidth. Let’s explore this idea further with the
win/win approach.

This approach is based on the idea that for many problems, large treewidth implies trivial
instances. In both cases—small and large treewidth—we thus have an efficient way of
solving the problem. This approach can be summarized this way:

Compute the treewidth of the input;
If the treewidth is small, use the dynamic programming approach that we discussed;
If the treewidth is large, the graph probably has an underlying structure (such as a
grid), exploit it to trivially solve the problem.

Let’s see a simple example of that!

Simon Rey Treewidth 14 / 35

The Famous Bar Fight Prevention problem

Vertex Cover

Instance: A graph G = 〈V , E〉 and an integer k ∈N

Parameter: tw(G) the treewidth of G
Question: Is there a set of vertices S ⊆ V of size |S| ≤ k such that for all

edges (u, v) ∈ E, either u ∈ S or V ∈ S?

What can we say about the treewidth of a graph G that has a vertex cover S of size k? It
is at most k: a path in which every bag consists in S plus a vertex outside of S is a tree
decomposition of G.

Let’s then do the following: First, check whether G has treewidth at most k using Bodle-
ander’s algorithm. If not, reject the instance. If G has treewidth at most k, use a dynamic
programming algorithm that can solve Vertex Cover for G in time 2k × kO(1) × |V |. I
won’t present the algorithm here, but it exists, I promise you.

The overall procedure runs in FPT time. �

Simon Rey Treewidth 15 / 35

Graph Minors

Efficiently applying this technique relies on understanding the implications that a large
treewidth has on the structure of a graph. This can be studied via graph minors.
A minor H of a graph G is a graph that can be obtained using the following operations:

Deleting some edges of G;
Deleting some vertices of G;
Contracting some edges of G: merging two connected vertices.

Example: The following sequence of operations shows that H is a minor of G.

G: • • • • •
•

•
• • • • •
•

•
• • • • •
•

•

• • • • •
•

•
• • • •
•

•
H: • ••

•

•

Delete
edge

Delete
edge

Delete
edge

Delete
vertex

Contract
edge

Simon Rey Treewidth 16 / 35

Excluded Grid Theorem

One of the most important result (coming soon!) in that area states that graphs with large
treewidth contain a grid as a minor. But what is a grid?

For any positive integer t ∈ N>0, a t× t grid, denoted by �t, is a graph with vertices
{(x, y) | x, y ∈ {1, . . . , t}}. It can be shown that the grid �t has treewidth tw(�t) = t.

Since tw(�t) = t, any graph containing �t as a minor must have treewidth at least t. More
surprising, the conserve also holds.

Theorem: Excluded Grid Theorem
There exists a function g(t) that is O(t98+o(1)) such that every graph of treewidth
larger than g(t) contains �t as a minor.

The bound has been successively improved to O(t36+o(1)), O(t19+o(1)) and lately O(t9+o(1)).

This theorem yielded many deep algorithmic results that are way beyond the scope of this
project. Just keep in mind that it is an active line of work!

Simon Rey Treewidth 17 / 35

4. Game Theoretic Characterization of Treewidth

The Robber Game

The k-robber game, played on a graph G = 〈V , E〉, has the following rules:
There are k cops and a robber ;
At the beginning, the k cops are placed G, the robber then selects a starting position.
During a turn, a subset of cops take a helicopter and announce on which vertices they
will land (one for each of them;
After the lift off, the robber can move along the edges of G but cannot go through a
vertex occupied by a cop;
Once the robber has selected his next position, the cops land and a new turn starts;
The positions of the robber is always known by the cops;
The cops win if one of them land on the position of the robber;
The robber wins if she can avoid the cops indefinitely.

Simon Rey Treewidth 18 / 35

An Example of the Game - Initial State

Beginning of the game

Three cops

One robber

Simon Rey Treewidth 19 / 35

An Example of the Game - Starting Positions for the Cops

The cops select their initial position

One robber

Simon Rey Treewidth 20 / 35

An Example of the Game - Starting Positions for the Robber

The robber tries to go as far as possible from them

Simon Rey Treewidth 21 / 35

An Example of the Game - First Round Helicopter Lift Off

The cops rush to the robber

Simon Rey Treewidth 22 / 35

An Example of the Game - First Round Robber Move

The robber runs away as far as she can

Simon Rey Treewidth 23 / 35

An Example of the Game - End of the First Round

Cops land and discover the robber escaped

Simon Rey Treewidth 24 / 35

An Example of the Game - Second Round Helicopter Lift Off

The cops hired a graph theorist, he is now helping them

Simon Rey Treewidth 25 / 35

An Example of the Game - Second Round Robber Move

The Robber is afraid by such a tactical move, he freezes

Simon Rey Treewidth 26 / 35

An Example of the Game - End of the Second Round

The Robber is afraid by such a tactical move, he freezes

Simon Rey Treewidth 27 / 35

An Example of the Game - Third Round Helicopter Lift Off

Still moving cleverly

Simon Rey Treewidth 28 / 35

An Example of the Game - Third Round Robber Move

He is trapped, what can he do???

Simon Rey Treewidth 29 / 35

An Example of the Game - End of the Third Round

The cops are getting closer!

Simon Rey Treewidth 30 / 35

An Example of the Game - End of the Forth Round

The cops catch the robber and win the game.

Simon Rey Treewidth 31 / 35

A New Characterization of Treewidth

Apart from a nice animation, what is the added value of this game?

Theorem:
The two following facts are equivalent for a given graph G and k ∈N:

The treewidth of G is tw(G) ≤ k;
There exists a winning strategy for k + 1 cops on the robber game on G.

Because the graph in the previous example is outerplanar, I was sure the cops could win.
Indeed, outerplanar have treewidth 2, hence 3 cops are enough to catch the robber.

Let’s see how we can use this characterization to find bounds on the treewidth of a grid.

Simon Rey Treewidth 32 / 35

Upper Bound of the Treewidth of Grids
Recall that a t× t grid looks like that (for t = 6):

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What would be an efficient strategy for t + 1 cops?
With t + 1 cops, the grid can be searched column per column with the following strategy:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

· · ·

Proposition:
The treewidth of a t× t grid �t is at most t.

Simon Rey Treewidth 33 / 35

Lower Bound of the Treewidth of Grids

Let’s look for lower bounds now!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What would be an efficient strategy for t− 1 cops?
Always moving on a cell at the intersection of a column and row both without any cops.
Such a cell always exists since there are not enough cops to fully cover a column or a row.

Proposition:
The treewidth of a t× t grid �t is at least t− 1.

Our two results show that t− 1 ≤ tw(�t) ≤ t. We actually know that tw(�t) = t but the
proof is much harder.

Simon Rey Treewidth 34 / 35

5. Conclusion

Summary

Today, we have:
Introduced the idea of tree decomposition which yielded the definition of the treewidth;
Studied how one can efficiently compute the treewidth of a given graph;
Presented some algorithms working with the treewidth and the general underlying
scheme for these algorithms;
Studied the treewidth further by presenting the excluded grid theorem and another
characterization through the robber game.

Next lecture will be devoted to the hardness theory of parameterized complexity: showing
that some problems are not fixed-parameter tractable.

Simon Rey Treewidth 35 / 35

	Tree Decomposition of a Graph and Treewidth
	Definition
	Computing a Tree Decomposition

	Treewidth and Dynamic Programming
	The Win/Win Approach: Treewidth Reductions
	Game Theoretic Characterization of Treewidth
	Conclusion

