Effort-Based Fairness—Equity of Resources—for Participatory Budgeting

Simon Rey

Joint work with Jan Maly, Ulle Endriss and Martin Lackner

Institute for Logic, Language and Computation (ILLC) University of Amsterdam

2022 SSCW Meeting

Simon Rey

Effort-Based Fairness—Equity of Resources—forParticipatory Budgeting

1 / 23

1. Introduction

Participatory Budgeting

Standard Model of Participatory Budgeting

Satisfaction-Based Fairness for Participatory Budgeting

Fairness is about distributing some *measure* fairly among the agents.
→ What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

Cardinal Utility Functions

 $\checkmark~$ The satisfaction of an agent is obvious

 $\pmb{\times}$ Hard to elicit

✗ Does not allow for interpersonal comparisons Approval-Based Satisfaction

- \checkmark Easy to elecit
- $\checkmark~$ Has a clear meaning
- $\textbf{X} \quad \begin{array}{l} \text{Unclear what proxy} \\ \text{for satisfaction to use} \\ |A \cap \pi| \qquad c(A \cap \pi) \end{array}$

We aim at *equity of resources* among the agents.

Effort-Based Fairness—Equity of Resources—forParticipatory Budgetin

2. The Share

3. Providing Fair Share

The Perfect Situation

Every agent is provided their *fair share*, *i.e.*:

$$share(\pi, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

Simon Rey

Effort-Based Fairness—Equity of Resources—forParticipatory Budgeting

A First Problem

It is not possible to always provide fair share to everyone (and hard to know if we can).

Simon Rey

Effort-Based Fairness—Equity of Resources—forParticipatory Budgeting

4. Approximate Fair Share

Two Relaxations — Fair Share up to One Project

Every agent is provided their *fair share up to one project*, *i.e.*, for each agent there exists a project $p \in \mathcal{P}$ such that:

$$share(\pi \cup \{p\}, A_i) \ge \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

 \mapsto This is however still unsatisfiable (and hard again)...

(\$) = 5		2	
\mathbf{Cost}	3	3	3
8	1	1	
8	1		1
8		1	1

A budget allocation π provides *local fair share* if there is no project $p \in \mathcal{P} \setminus \pi$ such that for every agent *i* approving of *p* we have:

$$share(\pi \cup \{p\}, A_i) < \min\left\{share(A_i, i), \frac{b}{n}\right\}$$

 \rightarrow An explanation? If such a p exists, all supporters of p receive less than their fair share and:

- Either p can be selected without exceeding the budget limit; let's select it then!
- Or, some voter i^* received more than their fair share; let's then exchange a project approved by i^* with p!

Note: This can be seen as a quota property: you add projects such that no one exceed their fair share as long as possible.

Local fair share is always satisfiable (and in polynomial time)!

 \mapsto We can prove that *Rule X* (a.k.a. the method of equal share) satisfies local fair share.

Rule X

Rule X Satisfies Local Fair Share

5. Justified Share

New idea: We want to provide what is deserved by the agents! But **what** do they deserve and **who**?

→ Cohesive groups deserve to be represented to the amount of budget they control!

Agents in $N \subseteq \mathcal{N}$ are *P*-cohesive, if $P \subseteq \bigcap_{i \in N} A_i \quad \text{and} \quad \underbrace{\frac{|N|}{n} \ge \frac{c(P)}{b}}_{\text{They are similar}}$ They control enough units of budget Strong EJS: for every P-cohesive group N, for every agent $i \in N$, $share(\pi, i) \ge share(P, i)$. Unsatisfiable

EJS: for every *P*-cohesive group *N*, there is an agent $i \in N$ such that $share(\pi, i) \ge share(P, i)$. Satisfiable In Exponential Time

EJS-1: for every *P*-cohesive group *N*, there is an agent $i \in N$ and a project $p \in \mathcal{P}$ such that $share(\pi \cup \{p\}, i) \geq share(P, i)$.

Satisfiable In Polynomial Time

Local-EJS: for no *P*-cohesive group *N* would there exist a project $p \in P \setminus \pi$ such that for all agent $i \in N$, $share(\pi \cup \{p\}, i) < share(P, i)$.

Satisfiable Unknown for PB instances

The arrow is proved to be missing here

6. Experimental Analysis of the Share

Instances: 350 instances from Pabulib with up to 65 projects.

Measure of Interest: The capped fair share ratio:

$$\min\left\{\frac{share(\pi, i)}{\min\{b/n, share(A_i, i)\}}, 1\right\}$$

Fair share can be provided in only one instance out of the 350 considered (with 3 projects and 198 voters).

Optimal Average Fair Share Ratio

We are far from achieving fair share.
It gets easier as the number of projects increase.

Simon Rey

Effort-Based Fairness—Equity of Resources—forParticipatory Budgeting

Optimal Average Fair Share Ratio – Preprocessing

→ Fair Share is hard to satisfy, structurally hard.

Simon Rey

Optimal Average Fair Share Ratio – Apprximation

→ Fair Share is hard to satisfy, structurally hard.

Simon Rey

7. Conclusion

Wrap-Up

We have...

- ...Argued for defining fairness in terms of effort;
- ... Presented the share, one operationalisation of the idea of effort;
- ...Discussed how to satisfy fairness criteria related to the share.

Future work includes:

- Solving the Local-EJS matter (is it satisfiable in polynomial time?);
- Looking for non-sequential rules that could provide strong requirements (when they exist), *e.g.*, rules optimizing for fair share;
- Extending the experimental section: can we provide satisfaction-based and effort-based fairness at the same time?

THANKS!

Simon Rey