Introduction 0000000 Poison Modal Logic (PML)

Expressivity of PMI 0000000 Undecidability 00000 Discussion C

Conclusion 000

Credulous Acceptability, Poison Game and Modal Logic

Simon Rey

Joint work with Davide Grossi

SYSMICS 2019

Introduction •000000	Poison Modal Logic (PML) 0000000	Expressivity of PML 0000000	Undecidability 00000	Discussion 000000	Conclusion	2
Plan						

- 2 Poison Modal Logic (PML)
- 3 Expressivity of PML
- 4 Undecidability
- 5 Discussion

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	3
0000000						

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	3
000000						

Has good reviews

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion
000000					
٨		1			

4

Argumentation framework

Definition (Argumentation framework)

An argumentation framework, is a graph $G = (A, \rightarrow)$ where A is a set of arguments and $\rightarrow \subseteq A^2$ is a set of attacks.

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	
0000000						
Admice	sible coto					

Admissible sets

Definition (Admissible set)

Let $G = (A, \rightarrow)$ be an argumentation framework, $X \subseteq A$ is an admissible set if:

- No two nodes in X attack one another
- For each $y \in A \setminus X$ such that $\exists x \in X, (y, x) \in \rightarrow$ then $\exists z \in X, (z, y) \in \rightarrow$.

An admissible set is also called a set of credulously acceptable arguments, it corresponds to a semi-kernel in the reverse graph.

Importance of admissible sets

- Main argumentation semantics¹: a preferred extension is a maximal admissible set, this semantics generalizes the Reiter's extension semantics of default reasoning
- Graph-theoretic systematization of logic programming and default reasoning²: they correspond to partial stable models³
- Benchmark semantics for the evaluation of arguments⁴

¹Dung, 1995.
²Dimopulos and Magirou, 1994.
³Przymusinski, 1990.
⁴Bench-Capon and Dunne, 2007.

Importance of admissible sets

- Main argumentation semantics¹: a preferred extension is a maximal admissible set, this semantics generalizes the Reiter's extension semantics of default reasoning
- Graph-theoretic systematization of logic programming and default reasoning²: they correspond to partial stable models³
- Benchmark semantics for the evaluation of arguments⁴

Existence of admissible sets is a key reasoning task

¹Dung, 1995. ²Dimopulos and Magirou, 1994. ³Przymusinski, 1990. ⁴Bench-Capon and Dunne, 2007.

Introduction 00000●0	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	7
The Po	oison Game					

 \mathbb{P} chooses the first node

⁵P. Duchet and H. Meyniel (1993). "Kernels in directed graphs: a poison game". In: *Discrete mathematics* 115.1-3, pp. 273–276.

Introduction 00000●0	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	7
The Po	oison Game					

O moves and poisons 2

⁵P. Duchet and H. Meyniel (1993). "Kernels in directed graphs: a poison game". In: *Discrete mathematics* 115.1-3, pp. 273–276.

Introduction 00000●0	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	7
The Po	oison Game					

 \mathbb{P} goes to 5

Introduction 00000●0	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	7
The Po	oison Game					

O poisons 4

Introduction 00000●0	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	7
The Po	oison Game					

 \mathbb{P} indefinitely moves to 6 and wins the game

Introduction 00000●0	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	7
The Po	oison Game					

 \mathbb{P} indefinitely moves to 6 and wins the game

Introduction 00000●0	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	7
The Po	oison Game					

 \mathbb{P} indefinitely moves to 6 and wins the game

 Introduction
 Poison Modal Logic (PML)
 Expressivity of PML
 Undecidability
 Discussion
 Conclusion

 0000000
 0000000
 000000
 000000
 000000
 000000

8

Links between the Poison Game and Admissible Sets

Theorem (Duchet and Meyniel, 1993)

Let (W, R) be a finite directed graph. There exists a non-empty semi-kernel in (W, R) if and only if \mathbb{P} has a winning strategy in the Poison Game for (W, R).

 Introduction
 Poison Modal Logic (PML)
 Expressivity of PML
 Undecidability
 Discussion
 Conclusion

 0000000
 0000000
 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

Links between the Poison Game and Admissible Sets

Theorem (Duchet and Meyniel, 1993)

Let (W, R) be a finite directed graph. There exists a non-empty semi-kernel in (W, R) if and only if \mathbb{P} has a winning strategy in the Poison Game for (W, R).

▶ P has a winning strategy in the Poison Game for (W, R) if and only if there are credulously acceptable arguments in the argumentation framework (W, R^{-1})

Introduction 0000000	Poison Modal Logic (PML) ●000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion	9
Plan						

1 Introduction

- 2 Poison Modal Logic (PML)
- 3 Expressivity of PML
- 4 Undecidability
- 5 Discussion

Syntax						
Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	10
0000000	0●00000	0000000	00000	000000	000	

Definition (Poison modal language $\mathcal{L}^{\mathfrak{p}}$)

A formula of the poison modal language $\mathcal{L}^{\mathfrak{p}}$ is defined accordingly to the following grammar in Backus-Naur Form (BNF):

$$\mathcal{L}^{\mathfrak{p}}:\varphi::=\boldsymbol{p}\mid\neg\varphi\mid\varphi\wedge\varphi\mid\Diamond\varphi\mid\boldsymbol{\Diamond}\varphi\mid\boldsymbol{\Diamond}\varphi,$$

where $p \in \mathbf{P} \cup \{\mathfrak{p}\}$ with \mathbf{P} a countable set of propositional atoms and \mathfrak{p} a distinguished atom called *poison atom*.

We call $\mathcal{L}_n^{\mathfrak{p}}$ a multi-modal variant of $\mathcal{L}^{\mathfrak{p}}$ with *n* distinct pairs $(\Diamond_i, \blacklozenge_i)$ of modalities each equipped with a distinct poison atom \mathfrak{p}_i .

Models for PML are Kripke structures of the form $\mathcal{M} = (W, R, V)$ with W a set of world, $R \subseteq W \times W$ an accessibility relation and $V : \mathbf{P} \cup \{\mathfrak{p}\} \rightarrow 2^W$ a valuation function.

Poison	Operator					
Introduction	Poison Modal Logic (PML) 00●0000	Expressivity of PML 0000000	Undecidability 00000	Discussion 000000	Conclusion 000	1

Definition (Poison operator)

We define a poison operator \bullet on models which modifies the valuation of a model by adding a world to the valuation of the poison atom \mathfrak{p} . That is for a model $\mathcal{M} = (W, R, V)$:

$$\mathcal{M}^{ullet}_w = (W, R, V)^{ullet}_w = (W, R, V')$$

with, $orall p \in \mathbf{P}, V'(p) = V(p)$
and $V'(\mathfrak{p}) = V(\mathfrak{p}) \cup \{w\}.$

Definition (Poison relation)

The poisoning relation $\xrightarrow{\bullet}$ between two models is defined as:

$$(\mathcal{M}, w) \stackrel{\bullet}{\rightarrow} (\mathcal{M}', w') \Longleftrightarrow w R^{\mathcal{M}} w' \text{ and } \mathcal{M}' = \mathcal{M}_{w'}^{\bullet}.$$

~						
Introduction 0000000	Poison Modal Logic (PML) 000●000	Expressivity of PML 0000000	Undecidability 00000	Discussion 000000	Conclusion	12

Semantics

Definition (Satisfaction relation)

The satisfaction relation of PML is defined recursively for a given pointed model (\mathcal{M}, w) as follows:

$$(\mathcal{M}, w) \models p \iff w \in V(p), \forall p \in \mathbf{P} \cup \{\mathfrak{p}\}\$$
$$(\mathcal{M}, w) \models \neg \varphi \iff (\mathcal{M}, w) \not\models \varphi$$
$$(\mathcal{M}, w) \models \varphi \land \psi \iff (\mathcal{M}, w) \models \varphi \text{ and } (\mathcal{M}, w) \models \psi$$
$$(\mathcal{M}, w) \models \Diamond \varphi \iff \exists v \in W, R(w, v), (\mathcal{M}, v) \models \varphi$$
$$(\mathcal{M}, w) \models \phi \varphi \iff \exists v \in W, R(w, v), (\mathcal{M}_{v}^{\bullet}, v) \models \varphi$$

Definition (Poison modal equivalence)

We define the poison modal equivalence $\stackrel{p}{\longleftrightarrow}$ as follow:

$$(\mathcal{M}, w) \stackrel{\mathfrak{p}}{\longleftrightarrow} (\mathcal{M}', w') \Longleftrightarrow (\mathcal{M}, w) \models \varphi \Leftrightarrow (\mathcal{M}', w') \models \varphi.$$

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	13
0000000	0000€00	0000000	00000	000000	000	
Validiti	ies					

Let us define the dual poison modality $\blacksquare \varphi := \neg \blacklozenge \neg \varphi$.

Let $p \in \mathbf{P}$ be an atom and $\varphi \in \mathcal{L}^{\mathfrak{p}}$ and $\psi \in \mathcal{L}^{\mathfrak{p}}$ two PML formulas, then the following formulas are valid in PML:

Cycle	letection					
Introduction 0000000	Poison Modal Logic (PML) 0000000	Expressivity of PML 0000000	Undecidability 00000	Discussion 000000	Conclusion	14

Proposition

Let $\mathcal{M} = (W, R, V)$ be a PML model such that $V(\mathfrak{p}) = \emptyset$, then for $n \in \mathbb{N}_{>0}$ there exists $w \in W$ such that $(\mathcal{M}, w) \models \blacklozenge(\delta_n)$ if and only if there exists a cycle of length n in the frame (W, R), with:

$$\delta_{1} = \Diamond \mathfrak{p}$$

$$\delta_{2} = \Diamond (\neg \mathfrak{p} \land \delta_{1})$$

:

$$\delta_{n} = \Diamond (\neg \mathfrak{p} \land \delta_{n-1})$$

	detection					
Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	14
0000000	00000●0	0000000	00000	000000	000	

Proposition

Let $\mathcal{M} = (W, R, V)$ be a PML model such that $V(\mathfrak{p}) = \emptyset$, then for $n \in \mathbb{N}_{>0}$ there exists $w \in W$ such that $(\mathcal{M}, w) \models \blacklozenge(\delta_n)$ if and only if there exists a cycle of length n in the frame (W, R), with:

$$\delta_{1} = \Diamond \mathfrak{p}$$

$$\delta_{2} = \Diamond (\neg \mathfrak{p} \land \delta_{1})$$

$$\vdots$$

$$\delta_{n} = \Diamond (\neg \mathfrak{p} \land \delta_{n-1})$$

PML is not bisimulation-invariant, its formulas are not preserved by tree-unravelings and it does not enjoy the tree model property. Introduction Poison Modal Logic (PML) Expressivity of PML Undecidability Discussion Conclusion 15

Winning strategies for the Poison Game

Winning positions for ${\mathbb O}$ are defined by the following infinitary $\mathcal{L}^{\mathfrak{p}}\text{-}\mathsf{formula}$:

$$\mathbf{A} \square \mathfrak{p} \lor \mathbf{A} \square \mathbf{A} \square \mathfrak{p} \lor \dots$$
(9)

Dually, winning positions for $\mathbb P$ are defined by the following infinitary $\mathcal L^p\text{-}formula:$

Remark (Credulous acceptability and PML)

By Duchet and Meyniel's theorem, formula (10), interpreted on the inversion of an argumentation framework, expresses the property "there exist credulously acceptable arguments in the framework".

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	16
0000000	0000000	•000000	00000	000000	000	
Plan						

- 2 Poison Modal Logic (PML)
- 3 Expressivity of PML
- 4 Undecidability
- 5 Discussion

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	
0000000	0000000	000000	00000	000000	000	

First-Order Logic translation

Definition (FOL translation)

Let p, p, q, ... be propositional atoms, we call $\mathfrak{P}, P, Q, ...$ their corresponding first-order predicate.

Let *N* be a finite set of variables, and *x* a designated variable, the translation $ST_x^N : \mathcal{L}^p \to \mathcal{L}$ is defined inductively as follows:

$$ST_{x}^{N}(p) = P(x), \forall p \in \mathbf{P}$$

$$ST_{x}^{N}(\neg \varphi) = \neg ST_{x}^{N}(\varphi)$$

$$ST_{x}^{N}(\varphi \wedge \psi) = ST_{x}^{N}(\varphi) \wedge ST_{x}^{N}(\psi)$$

$$ST_{x}^{N}(\Diamond \varphi) = \exists y \left(xRy \wedge ST_{y}^{N}(\varphi) \right)$$

$$ST_{x}^{N}(\blacklozenge \varphi) = \exists y \left(xRy \wedge ST_{y}^{N \cup \{y\}}(\varphi) \right)$$

$$ST_{x}^{N}(\blacklozenge \varphi) = \Re(x) \vee \bigvee_{y \in N} (y = x).$$

Introduction 0000000	Poison Modal Logic (PML)	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 000	18
_						

Correctness of the translation

Theorem

Let (\mathcal{M}, w) be a pointed model and $\varphi \in \mathcal{L}^{\mathfrak{p}}$ a formula, we have: $(\mathcal{M}, w) \models \varphi \iff \mathcal{M} \models ST_{x}^{\emptyset}(\varphi)[x := w].$

Poison Risimulation					
Introduction Poison Modal Logic (PML)	Expressivity of PML 000●000	Undecidability 00000	Discussion 000000	Conclusion 000	19

Definition (p-bisimulation)

Two pointed models (\mathcal{M}_1, w_1) and (\mathcal{M}_2, w_2) are said to be p-bisimilar, written $(\mathcal{M}_1, w_1) \stackrel{\mathfrak{p}}{\rightleftharpoons} (\mathcal{M}_2, w_2)$, if there exists $Z \subseteq W^{\mathcal{M}_1} \times W^{\mathcal{M}_2}$ such that $w_1 Z w_2$ and whenever w Z v we have:

- **Atom** For any atom $p \in \mathbf{P} \cup \{\mathfrak{p}\}$, $w \in V^{\mathcal{M}_1}(p)$ iff $v \in V^{\mathcal{M}_2}(p)$.
 - $$\begin{split} \textbf{Zig}_{\Diamond} \quad \text{If there exists } w' \in \mathcal{M}_1 \text{ such that } wR^{\mathcal{M}_1}w' \text{ then there exists} \\ v' \in \mathcal{M}_2 \text{ such that } vR^{\mathcal{M}_2}v' \text{ and } (\mathcal{M}_1, w')Z(\mathcal{M}_2, v'). \end{split}$$
- $$\begin{split} \textbf{Zag}_{\Diamond} & \text{ If there exists } v' \in \mathcal{M}_2 \text{ such that } vR^{\mathcal{M}_2}v' \text{ then there exists } \\ & w' \in \mathcal{M}_1 \text{ such that } wR^{\mathcal{M}_1}w' \text{ and } (\mathcal{M}_1,w')Z(\mathcal{M}_2,v'). \end{split}$$
- $\begin{array}{ll} \textbf{Zig}_{\blacklozenge} & \text{ If there exists } (\mathcal{M}'_1, w'_1) \text{ such that } (\mathcal{M}_1, w_1) \xrightarrow{\bullet} (\mathcal{M}'_1, w'_1), \text{ then} \\ & \text{ there exists } (\mathcal{M}'_2, w'_2) \text{ such that } (\mathcal{M}_2, w_2) \xrightarrow{\bullet} (\mathcal{M}'_2, w'_2) \text{ and} \\ & (\mathcal{M}'_1, w'_1) Z(\mathcal{M}'_2, w'_2). \end{array}$
- $\begin{array}{ll} \textbf{Zag}_{\blacklozenge} & \text{ If there exists } (\mathcal{M}'_2, w'_2) \text{ such that } (\mathcal{M}_2, w_2) \stackrel{\bullet}{\to} (\mathcal{M}'_2, w'_2), \text{ then there exists } (\mathcal{M}'_1, w'_1) \text{ such that } (\mathcal{M}_1, w_1) \stackrel{\bullet}{\to} (\mathcal{M}'_1, w'_1) \text{ and } (\mathcal{M}'_1, w'_1) Z(\mathcal{M}'_2, w'_2). \end{array}$

Introduction 0000000	Poison Moda	al Logic (Pl	ML)	Expressivity of PML 0000●00	Undecidability 00000	Discussion 000000	Conclusion 000	20
-								

Introduction 0000000	Poison Moda	I Logic (PM	L) E: 0	xpressivity c 000€00	of PML	Undecidability 00000	Discussion 000000	Conclusion 000	20
_									

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	20
0000000	0000000	0000000	00000	000000	000	

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	20
		0000000				

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	20
		0000000				

Charac	torization of D					
		0000000				
Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	21

Theorem

For two pointed models
$$(\mathcal{M}_1, w_1)$$
 and (\mathcal{M}_2, w_2) , if $(\mathcal{M}_1, w_1) \stackrel{\mathfrak{p}}{\rightleftharpoons} (\mathcal{M}_2, w_2)$ then $(\mathcal{M}_1, w_1) \stackrel{\mathfrak{p}}{\nleftrightarrow} (\mathcal{M}_2, w_2)$.

Theorem

For any two ω -saturated models (\mathcal{M}_1, w_1) and (\mathcal{M}_2, w_2) , if $(\mathcal{M}_1, w_1) \stackrel{\mathfrak{p}}{\longleftrightarrow} (\mathcal{M}_2, w_2)$ then $(\mathcal{M}_1, w_1) \stackrel{\mathfrak{p}}{\rightleftharpoons} (\mathcal{M}_2, w_2)$.

Theorem

An \mathcal{L} formula is equivalent to the translation of an $\mathcal{L}^{\mathfrak{p}}$ formula if and only if it is invariant for p-bisimulation.

Introduction October Operation Poison Modal Logic (PML) Expressivity of PML Undecidability October Operation Conclusion O

22

Remark (Credulous admissibility and p-bisimulation)

Formula (10) expresses the existence of credulous admissible arguments, and is invariant for p-bisimulation.

It directly follows that, given two p-bisimilar pointed models (\mathcal{M}_1, w_1) and (\mathcal{M}_2, w_2) , the frame of \mathcal{M}_1 contains credulously admissible arguments if and only if the frame of \mathcal{M}_2 does.

Introduction 0000000	Poison Modal Logic (PML) 0000000	Expressivity of PML 0000000	Undecidability ●0000	Discussion 000000	Conclusion 000	23
Plan						

1 Introduction

- 2 Poison Modal Logic (PML)
- 3 Expressivity of PML
- 4 Undecidability
- 5 Discussion

Undooi	dability of DM				000	
Introduction 0000000	Poison Modal Logic (PML) 0000000	Expressivity of PML 0000000	Undecidability 0●000	Discussion 000000	Conclusion	24

The satisfaction problem for PML_3 (PML with 3 modalities) can be defined as follows:

Data: A PML₃ formula $\varphi \in \mathcal{L}_3^{\mathfrak{p}}$.

Problem: Is there (\mathcal{M}, w) , with $V(\mathfrak{p}) = \emptyset$, s.t. $(\mathcal{M}, w) \models \varphi$?

Theorem

The satisfaction problem for PML_3 is undecidable.

Given a finite set of colors C, a tile is a 4-tuple of colors (its 4 sides). The $\mathbb{N} \times \mathbb{N}$ tilling problem is then defined as follows:

- **Data:** A finite set T of tiles.
- **Problem:** Can the infinite grid $\mathbb{N} \times \mathbb{N}$ be tiled using only tiles in \mathcal{T} and such that two adjacent tiles share the same color on their common edge ?

This problem is known to be undecidable⁶.

⁶D. Harel (1983). "Recurring dominoes: Making the highly undecidable highly understandable (preliminary report)". In: *International Conference on Fundamentals of Computation Theory*. Springer, pp. 177–194.

Let T be a finite set of tiles, φ_T^7 is satisfiable iff T tiles $\mathbb{N} \times \mathbb{N}$:

⁷B. Ten Cate and M. Franceschet (2005). "On the complexity of hybrid logics with binders". In: *International Workshop on Computer Science Logic*. Springer, pp. 339–354.

Introduction Poison Modal Logic (PML) Expressivity of PML Undecidability Discussion Conclusion 27

Failure of the finite model property of PML

Proposition

PML does not have the finite model property.

Let us consider φ_∞ such that all its models are infinite chains:

Introduction 0000000	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion •00000	Conclusion	28
Plan						

1 Introduction

- 2 Poison Modal Logic (PML)
- 3 Expressivity of PML
- 4 Undecidability

5 Discussion

	000000	000

The simplest memory logic⁸, $\mathcal{M}(\mathbb{C}, \mathbb{R})$, extends modal semantics by considering frames (W, R, M) where $M \subseteq W$ is a set of states that have been 'memorized'. Its language is defined by:

$$\mathcal{L}_{\mathcal{M}}: \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \bigcirc \mid \bigotimes$$

The semantics for the two new operators (r) and (k) is:

$$((W, R, M, V), w) \models (\widehat{r}\varphi \iff ((W, R, M \cup \{w\}, V), w) \models \varphi$$
$$((W, R, M, V), w) \models (\widehat{k} \iff w \in M,$$

where V is a valuation function.

• PML is a proper fragment of $\mathcal{M}(\mathbf{r}, \mathbf{k})$.

⁸C. Areces, D. Figueira, and S. Mera (2008). "Expressive power and decidability for memory logics". In: *Proceedings of WoLLIC 2008*. Vol. 5110. LNCS, pp. 56–68.

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion
0000000	0000000	0000000	00000	00000	

30

PML and Memory Logic

Proposition

 $\mathcal{M}(\mathbf{r}, \mathbf{k})$ is strictly more expressive than PML.

Proof.

An embedding of PML into $\mathcal{M}(\mathcal{C}, \mathbb{K})$ can be defined as follow:

$$MT(\mathfrak{p}) = \mathbb{K}$$
$$MT(\blacklozenge \varphi) = \Diamond \mathbb{C}MT(\varphi)$$

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion
0000000	0000000	0000000	00000	000000	000

30

PML and Memory Logic

Proposition

 $\mathcal{M}(\tilde{r}, \mathbb{R})$ is strictly more expressive than PML.

Proof.

An embedding of PML into $\mathcal{M}((\mathbf{r}, \mathbf{k}))$ can be defined as follow:

$$MT(\mathfrak{p}) = \mathbb{K}$$
$$MT(\mathbf{\Phi}\varphi) = \Diamond \mathbb{C}MT(\varphi)$$

Let \mathcal{M} and \mathcal{M}' defined below, we have $\mathcal{M}' \models \bigcirc \Diamond \Diamond \&$ while \mathcal{M} falsifies it, but \mathcal{M} and \mathcal{M}' are p-bisimilar.

Hybrid	Logic					
Introduction 0000000	Poison Modal Logic (PML) 0000000	Expressivity of PML 0000000	Undecidability 00000	Discussion 000000	Conclusion	31

The Hybrid Logic⁹ $\mathcal{H}(\downarrow)$ is defined by the following grammar:

$$\mathcal{L}^{\mathcal{H}(\downarrow)}:\varphi:=p\mid i\mid \neg\varphi\mid\varphi\wedge\varphi\mid\Diamond\varphi\mid\downarrow x.\varphi,$$

with $p \in \mathbf{P} \cup \{p\}$ a propositional atom, and $i \in \mathbf{N}$ a nominal. Given an assignment $g : \mathbf{N} \to W$, g_m^x is called a *x*-variant of *g* if $\forall i \in \mathbf{N}, g(i) = g_m^x(i)$ and $g_m^x(x) = m$. The semantics is then defined as follows:

$$(M, g, m) \models_{\mathbf{H}} i \Leftrightarrow m = g(i)$$
$$(M, g, m) \models_{\mathbf{H}} \downarrow x.\varphi \Leftrightarrow (M, g_m^x, m) \models_{\mathbf{H}} \varphi$$

• PML can be embedded into $\mathcal{H}(\downarrow)$.

⁹P. Blackburn, J. van Benthem, and F. Wolter (2006). *Handbook of modal logic*. Vol. 3. Elsevier.

Introduction Poison Modal Logic (PML) Expressivity of PML Undecidability Discussion Conclusion 32

Hybrid Translation for PML

Let $HT^S : \mathcal{L}^{\mathfrak{p}} \to \mathcal{L}^{\mathcal{H}(\downarrow)}$, $S \subseteq \mathbf{N}$, be the translation defined as follows:

$$HT^{S}(p) = p$$

$$HT^{S}(p) = p \lor \bigvee_{i \in S} i$$

$$HT^{S}(\neg \varphi) = \neg HT^{S}(\varphi)$$

$$HT^{S}(\varphi \land \psi) = HT^{S}(\varphi) \land HT^{S}(\psi)$$

$$HT^{S}(\Diamond \varphi) = \Diamond HT^{S}(\varphi)$$

$$HT^{S}(\blacklozenge \varphi) = \Diamond \left(\downarrow x.HT^{S \cup \{x\}}(\varphi) \right)$$

Proposition

Let $\mathcal{M} = (W, R, V)$ be a PML-model, $\mathcal{M} = (W, R, V')$ its hybrid extension, g an assignment and $\varphi \in \mathcal{L}^{\mathfrak{p}}$ a PML-formula, we have:

 $(\mathcal{M}, w) \models \varphi \iff (\mathcal{M}, g, w) \models_{\mathsf{H}} HT^{\emptyset}(\varphi).$

Introduction Poison Modal Logic (PML) Expressivity of PML Undecidability Discussion Conclusion

33

Inclusion between PML and other logics

Figure: Links between PML and other logics

Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	34
0000000	0000000	0000000	00000	000000	●00	
Plan						

1 Introduction

- 2 Poison Modal Logic (PML)
- 3 Expressivity of PML
- 4 Undecidability
- 5 Discussion

Summary of the presentation							
Introduction	Poison Modal Logic (PML)	Expressivity of PML	Undecidability	Discussion	Conclusion	35	
0000000	0000000	0000000	00000	000000	○●○		

We introduced and studied a modal logic PML that arises naturally from a game-theoretic approach to a central decision problem in argumentation theory: the existence of credulously acceptable arguments. We presented:

- A First-Order Logic translation
- An adequate bisimulation definition
- The undecidability of PML₃
- The links between PML and other logics

Introduction 0000000	Poison Modal Logic (PML) 0000000	Expressivity of PML	Undecidability 00000	Discussion 000000	Conclusion 00●	36
Future	work					

Concerning PML, some questions are left open:

- Can it be axiomatized?
- Is PML with one modality decidable?

In a broader view, this logic (like Sabotage Logic) calls for fixpoint extensions which pose interesting challenges¹⁰.

From the argumentation perspective, it could be interesting to have a look to skeptical semantics, i.e. arguments that belong to all admissible sets of a framework.

For further discussion:

```
d.grossi@rug.nl
srey@ens-paris-saclay.fr
```

Thank you !

¹⁰G. Aucher, J. van Benthem, and D. Grossi (2017). "Modal logics of sabotage revisited". In: *Journal of Logic and Computation* 28.2, pp. 269–303.

Proof of the undecidability of PML_3 - Grid structure

- w is a q-world, its R-successors are not q and link back to it, and the set of its R-successors is closed under R₁ and R₂:
 α = q ∧ □(¬q ∧ ◊q) ∧ □■₁◊(q ∧ ◊p) ∧ □■₂◊(q ∧ ◊p)
- For all *R*-successor of *w*, accessibility relations *R*₁ and *R*₂ are total functions:

$$\beta = \bigwedge_{i=1,2} \left(\Box \Diamond_i \top \land \blacksquare \Box (q \to \Box (\Diamond_i \mathfrak{p} \to \Box_i \mathfrak{p})) \right)$$

• Accessibility relations R_1 and R_2 commute:

$$\gamma = \blacksquare \Box \left(q \to \Box (\Box_1 \Box_2 \neg \mathfrak{p} \lor \Box_2 \Box_1 \mathfrak{p}) \right)$$

Proof of the undecidability of PML_3 - Correct tilling

• Only one tile is present at each node:

$$\delta^1_T = \bigvee_{t \in T} \left(p_t \wedge \bigwedge_{t' \in T, t' \neq t} \neg p_{t'} \right)$$

• Horizontal and vertical tilling are correct:

$$\delta_T^2 = \bigwedge_{t \in T} \left[\left(p_t \to \Box_1 \bigvee_{t' \in T, \mathbf{b}(t') = \mathbf{t}(t)} p_t \right) \land \left(p_t \to \Box_2 \bigvee_{t' \in T, \mathbf{l}(t') = \mathbf{r}(t)} p_t \right) \right]$$

Failure of the finite model property of PML - φ_∞

- α = ¬q ∧ ◊⊤ ∧ □q ∧ □(◊⊤ ∧ □¬q): the current state falsifies q and all its successors (there exists at least one) are q and have in turn successors (at least one) which all falsify q.
- β = ■□◊p: after any poisoning a state is reached whose successors can reach the poisoned state in one step. In other words, all successors of the current state have successors linked via symmetric edges.
- γ = ■□◊(¬q∧◊p)∧□□■□¬p: after any poisoning a state is reached whose successors are not reflexive loops (right conjunct), and can reach a ¬q state which can in turn reach the poison state. In other words, all successors of the current state lay on cycles of length 3.
- δ = □□■□(q → ◊p): all successors of the current state's successors are such that after any poisoning, and further q-successor can reach back to the poisoned state.
- *ϵ* = □ ♦ ¬◊(*q* ∧ ◊(¬*q* ∧ ◊p))): all successors of the current state are such that there is one successor that can be poisoned and such that none of its successors satisfies *q* and can reach the poisoned state in two steps via a ¬*q* state.

Input: A formula $\varphi \in \mathcal{L}^{\mathfrak{p}}$ **Output:** A tableau \mathcal{T} for φ with each branch labeled closed or open. (1) Initiate \mathcal{T} with a single node (the root) labeled with (φ, x, ϵ) (2) Repeat as long as there are rules that can be applied: (I) Choose a branch B that is not labeled "close" nor "open". (II) Choose a formula (ψ, x, s) , or a pair (ψ, x, s) and xRx_1 , in B that has not been selected before and for which a tableau rule R(Figure ??) can be applied. (A) If $R = \neg \land$ (resp $R = \Diamond$ or $R = \blacklozenge$), add 2 (resp. n + 1) successors to B labeled with the denominator of R(B) Else, add a single successor labeled with the denominator of R. (III) Analyze the branches: (A) Label "close" a branch which contains: (i) Either (p, x, s) and $(\neg p, x, s')$ where $p \in \mathbf{P} \cup \{\mathfrak{p}\}$. (ii) Or $(\mathfrak{p}_{\bullet}, x, s)$ and $(\neg \mathfrak{p}, x, s')$ where s' is a prefix of s. (B) Label "open" a branch for which no rules can be applied.

Tableau method for PML

$$\frac{\left(\neg \neg \varphi, x, s\right)}{\left(\varphi, x, s\right)} \neg \neg \qquad \frac{\left(\varphi \land \psi, x, s\right)}{\left(\varphi, x, s\right)} \land \qquad \frac{\left(\neg \left(\varphi \land \psi\right), x, s\right)}{\left(\neg \varphi, x, s\right) \mid \left(\neg \psi, x, s\right)} \neg \land \\
\frac{\left(\Diamond \varphi, x, s\right)}{\left(\varphi, x, s\right)} \qquad \frac{\left(\Diamond \varphi, x, s\right)}{\left(\varphi, x, s\right) \mid \left(\neg \psi, x, s\right)} \neg \land \\
\frac{\left(\Diamond \varphi, x, s\right)}{\left(\varphi, x_{1}, s\right) \mid \cdots \mid \left| \begin{array}{c} RR_{x_{n}} \\ \left(\varphi, x_{n}, s\right) \mid \left(\varphi, x_{n}, s\right) \\ \left(\varphi, x_{n}, s\right) \mid \left(\varphi, x_{n}, s\right) \right| \left(\varphi, x_{n}, s\right)} & \left(\begin{array}{c} \neg \left(\varphi, x, s\right) \\ \left(\neg \varphi, x, s\right) \\ \left(\neg \varphi, x_{1}, s\right) \\ \left(\neg \varphi, x_{1}, s\right) \right| \cdots \left| \begin{array}{c} RR_{x_{n}} \\ \left(\varphi, x_{n}, s\right) \right) & \left(\begin{array}{c} \neg \left(\varphi, x, s\right) \\ \left(\varphi, x_{n}, s\right) \\ \left(\varphi, x_{n}$$

For rules \Diamond and \blacklozenge , $\{x_1, \ldots, x_n\}$ are all labels occurring in the current branch and x_0 is a fresh label not occurring in the current branch. For rules \blacklozenge and $\neg \blacklozenge$, $a \in \Gamma$ is a fresh letter of the alphabet that has never been used before.

Example of infinite tableau

Example of finite tableau

Let us consider the following model \mathcal{M} :

The successive truth-set of $||\neg \mathfrak{p} \land \blacksquare \Diamond q||_{\mathcal{M}_{[q:=X]}}$ given the different values of X are given in the following table.

We then have $\forall w \in W$, $(\mathcal{M}, w) \models \nu q$. $(\neg \mathfrak{p} \land \blacksquare \Diamond q)$, whereas no nodes in (W, R) is a winning position for \mathbb{P} .