A Selective Literature Review of the Truth Tracking Approach in Computational Social Choice

Simon Rey

November 26, 2020

???????

Voting Theory

Axiomatic approach: Studying voting rules through the normative properties they satisfy.

??????

? ? ? ? ?

\land \land \land \land \land

Epistemic approach: Studying voting rules through their ability to recover the ground truth.

Noise Models

? = ? Ground Truth

Noise Models

Noise Model

Noise Models

• Condorcet Jury Theorem

- Condorcet Jury Theorem
- Maximum Likelihood Approach

- Condorcet Jury Theorem
- Maximum Likelihood Approach
- Sample Complexity

- Condorcet Jury Theorem
- Maximum Likelihood Approach
- Sample Complexity
- Robusteness to noise

- Condorcet Jury Theorem
- Maximum Likelihood Approach
- Sample Complexity
- Robusteness to noise

From specific noise models to classes of noise models

1. Simple Case: Two Candidates

Accuracy: 60%

Increasing Number of Voters with Accuracy 60%

THEOREM:

For an election with *two candidates* and *n* voters, if the voters correctly identify the ground truth with probability 1/2 and do so*independently*, then the*majority rule* $selects the ground truth with probability 1 as <math>n \to +\infty$.

• De Condorcet "Essai sur l'Application de l'Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix" (1785)

• Young "Condorcet's theory of voting" (1988)

THEOREM:

For an election with *two candidates* and *n* voters, if the voters correctly identify the ground truth with probability 1/2 and do so*independently*, then the*majority rule* $selects the ground truth with probability 1 as <math>n \to +\infty$.

→ This is the first application of the maximum likelihood approach that we know of!

• De Condorcet "Essai sur l'Application de l'Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix" (1785)

• Young "Condorcet's theory of voting" (1988)

2. Maximum Likelihood Approach

Maximum Likelihood Approach

- Basic Definitions and First Results

$$L(\boldsymbol{V},\boldsymbol{\theta}) = \prod_{\boldsymbol{V} \in \boldsymbol{V}} \mathbb{P}(\boldsymbol{V} \mid \boldsymbol{\theta})$$

Likelihood

$$R(\mathbf{V}) = \arg\max_{\theta} L(\mathbf{V}, \theta) = \arg\max_{\theta} \prod_{V \in \mathbf{V}} \mathbb{P}(V \mid \theta)$$

Maximum Likelihood Estimator

Maximum Likelihood Estimator

Maximum Likelihood Estimator

	MLE for Winner	not MLE for Winner
MLE for Ranking	Scoring rules: Borda, veto, plurality	Weird rules
not MLE for Ranking	STV	Bucklin, Copeland, maximin, ranked pairs

Conitzer and Sandholm "Common voting rules as maximum likelihood estimators" (2006)
Conitzer, Rognlie, and Xia "Preference Functions that Score Rankings and Maximum Likelihood Estimation" (2009)

Maximum Likelihood Approach

└─ The Case of Approval Ballots

Ground truth: σ^{\star}

<u>THEOREM</u>:

With the *Kendall tau* distance the set of MLE best alternatives coincides with the set of approval winners.

• Procaccia and Shah "Is Approval Voting Optimal Given Approval Votes?" (2015)

<u>THEOREM</u>:

With the *Kendall tau* distance the set of MLE best alternatives coincides with the set of approval winners.

With *plurality* or *veto* ballots, approval voting is an MLE for every "relevant" distance.

• Procaccia and Shah "Is Approval Voting Optimal Given Approval Votes?" (2015)

Looking for Specific Objectives

Select k alternatives so to maximize the probability of containing:

- the top alternative of the ground truth ranking,
- Ithe top k alternatives of the ground truth ranking,
- Ithe top k alternatives of the ground truth ranking in the right order.

• Procaccia, Reddi, and Shah "A maximum likelihood approach for selecting sets of alternatives" (2012)

Looking for Specific Objectives

Select k alternatives so to maximize the probability of containing:

- the top alternative of the ground truth ranking,
- Ithe top k alternatives of the ground truth ranking,
- Ithe top k alternatives of the ground truth ranking in the right order.

THEOREM:

All three objectives are NP-hard to achieve under Mallows' model.

They are *tractable* in very *noisy situation* ($\gamma \approx 1$).

• Procaccia, Reddi, and Shah "A maximum likelihood approach for selecting sets of alternatives" (2012)

3. Sample Complexity

Sample Complexity

- Some Definitions

$$Acc(R,k) = \left(\sum_{\boldsymbol{V} \in \mathcal{L}(A)^{k}} \mathbb{P}(\boldsymbol{V} \mid \sigma^{\star}) \mathbb{P}(R(\boldsymbol{V}) = \sigma^{\star})\right)$$

Accuracy of rule Rwith k samples $\left(\sum_{\boldsymbol{V}\in\mathcal{L}(A)^{k}}\mathbb{P}(\boldsymbol{V}\mid\sigma^{\star})\mathbb{P}(R(\boldsymbol{V})=\sigma^{\star})\right)$ Acc(R, k) =

$$Acc(R, k) = \min_{\sigma^{\star} \in \mathcal{L}(A)} \left(\sum_{\boldsymbol{V} \in \mathcal{L}(A)^{k}} \mathbb{P}(\boldsymbol{V} \mid \sigma^{\star}) \mathbb{P}(R(\boldsymbol{V}) = \sigma^{\star}) \right)$$

$$\mathcal{SC}(R,\epsilon) = \min \left\{ k \mid Acc(R,k) \ge 1 - \epsilon \right\}$$

Sample Complexity

└─ Sample Complexity in Practice
Given $\epsilon > 0$, the *Kemeny rule* with uniform tie-breaking is such that for Mallows' mode and for every rule *R*, we have:

 $\mathcal{SC}(\mathsf{KEM},\epsilon) \leq \mathcal{SC}(\mathsf{R},\epsilon).$

For any $\epsilon > 0$, the *Kemeny rule* returns the ground truth with probability $1 - \epsilon$ given $\mathcal{O}(\ln(|A|/\epsilon))$ and no rule can do better.

For any $\epsilon > 0$, the Kemeny rule returns the ground truth with probability $1 - \epsilon$ given $\mathcal{O}(\ln(|A|/\epsilon))$ and no rule can do better.

➡ Also holds for pairwise-majority consistent rules.

- The plurality rule sometimes requires *exponentially* many samples for Mallows' model.
- Positional scoring rules with distinct weights require a *polynomial* number of samples from Mallows' model.

4. Robustness to Noise

Robustness to Noise

— Definitions, Again!

DEFINITION:

A rule *R* is *accurate in the limit* for a noise model if for every $\epsilon > 0$, there exists n_{ϵ} such that for every profile of size at least n_{ϵ} , *R* returns the *ground truth* with probability $1 - \epsilon$.

DEFINITION:

A noise model is *d*-monotonic if for any σ , σ' , we have:

$$\mathbb{P}(\sigma \mid \sigma^{\star}) > \mathbb{P}(\sigma' \mid \sigma^{\star}) \Longleftrightarrow d(\sigma, \sigma^{\star}) < d(\sigma', \sigma^{\star}).$$

DEFINITION:

A rule is *monotone robust* against *d* if it is accurate in the limit for *every d*-monotonic noise model.

Robustness to Noise

Pairwise Majority Consistent Rules

DEFINITION:

A rule *R* is PM-consistent if it outputs the *Condorcet order* when the PM graph is *complete* and *acyclic*.

Majority Concentric Distances

Majority Concentric Distances

Majority Concentric Distances

DEFINITION:

A distance *d* if *majority concentric* if for every σ , every *a*, *b* such that $a \succ_{\sigma} b$ and every *k* we have:

$$|\eta_{\mathbf{a}\succ \mathbf{b}}^{\mathbf{k}}(\sigma)| \geq |\eta_{\mathbf{b}\succ \mathbf{a}}^{\mathbf{k}}(\sigma)|$$

All *PM consistent rules* are monotone robust against *d* if and only if *d* is *majority concentric*.

Multiwinner approval voting is *d*-monotone robust if and only if *d* is *majority concentric*.

• Caragiannis, Kaklamanis, Karanikolas, and Krimpas "Evaluating Approval-Based Multiwinner Voting in Terms of Robustness to Noise" (2020) **Robustness to Noise**

Gloablly Robust Rules

<u>Theorem</u>:

Modal ranking is the only generalized scoring rule that is monotone robust against *all* distances.

• Caragiannis, Procaccia, and Shah "Modal Ranking: A Uniquely Robust Voting Rule." (2014)

• Caragiannis, Kaklamanis, Karanikolas, and Krimpas "Evaluating Approval-Based Multiwinner Voting in Terms of Robustness to Noise" (2020)

Uniquely Robust Rules

<u>Theorem</u>:

Modal ranking is the only generalized scoring rule that is monotone robust against *all* distances.

THEOREM:

Modal counting is the only ABCC multiwinner rule that is monotone robust against *all* distances.

• Caragiannis, Procaccia, and Shah "Modal Ranking: A Uniquely Robust Voting Rule." (2014)

• Caragiannis, Kaklamanis, Karanikolas, and Krimpas "Evaluating Approval-Based Multiwinner Voting in Terms of Robustness to Noise" (2020)

5. Conclusion and Future Directions

• *Maximum Likelihood Approach:* Which outcome should we select given that agents form their preferences following a specific noise model?

- *Maximum Likelihood Approach:* Which outcome should we select given that agents form their preferences following a specific noise model?
- *Sample Complexity:* How many samples do we need to achieve a suitable accuracy?

- *Maximum Likelihood Approach:* Which outcome should we select given that agents form their preferences following a specific noise model?
- *Sample Complexity:* How many samples do we need to achieve a suitable accuracy?
- *Robustness to Noise:* Does the rule return the ground truth with high probability when there are infinitely many ballots? Is it true for classes of noise model based on a distance?

- Generalizations of the Condorcet Jury Theorem
- Epistemic social choice literature in Economics, Political Science
- Other estimators, criteria, objectives, ...

- Bovens and Rabinowicz "Democratic answers to complex questions-an epistemic perspective" (2006)
- Pivato "Voting Rules as Statistical Estimators" (2013)
- Xia "Statistical Properties of Social Choice Mechanisms" (2014)
- Elkind and Slinko "Rationalizations of Voting Rules" (2016)
- Pivato "Realizing epistemic democracy" (2019)

- Developing epistemic approaches in more complex voting settings:
 - *Multiwinner voting*: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)

- Developing epistemic approaches in more complex voting settings:
 - *Multiwinner voting*: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)
 - Settings with Constrained Outcomes: Participatory Budgeting, Judgment Aggregation...

- Developing epistemic approaches in more complex voting settings:
 - *Multiwinner voting*: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)
 - Settings with Constrained Outcomes: Participatory Budgeting, Judgment Aggregation...
- Investigating different probability models with non-uniform distributions, dependencies to other features of the models...

- Developing epistemic approaches in more complex voting settings:
 - *Multiwinner voting*: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)
 - Settings with Constrained Outcomes: Participatory Budgeting, Judgment Aggregation...
- Investigating different probability models with non-uniform distributions, dependencies to other features of the models...
- Looking into the links between various complexity classes: elicitation complexity, sample complexity, communication complexity...