# A Selective Literature Review of the Truth Tracking Approach in Computational Social Choice 

Simon Rey

November 26, 2020

## Voting Theory



## Voting Theory

## $?$ <br> ? <br> ? <br> ? <br> ? <br> ?




## Voting Theory






## Two Views on Voting




R


$R$




## Two Views on Voting



## Two Views on Voting



## Two Views on Voting



Axiomatic approach: Studying voting rules through the normative properties they satisfy.

## Two Views on Voting



## Two Views on Voting








## Two Views on Voting



## Two Views on Voting



## Two Views on Voting



Epistemic approach: Studying voting rules through their ability to recover the ground truth.

## Noise Models

$$
\begin{gathered}
?=? \\
\text { Ground Truth }
\end{gathered}
$$

## Noise Models

$$
\begin{aligned}
& \text { Ground Truth } \\
& \text { Noise Model }
\end{aligned}
$$

## Noise Models



## Ground Truth



## amazon

 mechanical turk
## Plan for the Day

- Condorcet Jury Theorem


## Plan for the Day

- Condorcet Jury Theorem
- Maximum Likelihood Approach


## Plan for the Day

- Condorcet Jury Theorem
- Maximum Likelihood Approach
- Sample Complexity


## Plan for the Day

- Condorcet Jury Theorem
- Maximum Likelihood Approach
- Sample Complexity
- Robusteness to noise


## Plan for the Day

- Condorcet Jury Theorem
- Maximum Likelihood Approach
- Sample Complexity
- Robusteness to noise



## 1. Simple Case: Two Candidates



## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 0

Votes for B: 1

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 1

Votes for B: 1

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 1

Votes for B: 2

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 1

Votes for B: 3

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 2

Votes for B: 3

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


## Two Candidates Election with Uniform Prior

Accuracy: 60\%


## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 3

$\square$
Votes for B: 5

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 3

- 

Votes for B: 6

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 3

I
Votes for B: 7

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 3

I
Votes for B: 8

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 4

I
Votes for B: 8

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 5

I
Votes for B: 8

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 6
$\square$

$\square$
Votes for B: 8

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 7


$\square$
Votes for B: 8

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 8


$\square$
Votes for B: 8

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 8


$\square$
Votes for B: 9

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 8


I
Votes for B: 10

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 8

I

I
Votes for B: 11

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 9

I

1
Votes for B: 11

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 10


I
Votes for B: 11

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 10


Votes for B: 12

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 10


Votes for B: 13

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 10



Votes for B: 14

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 11



Votes for B: 14

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 11


|
Votes for B: 15

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 12

I

1
Votes for B: 15

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 12

I


Votes for B: 16

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 12

I

|
Votes for B: 17

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 12

■

Votes for B: 18

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 13


Votes for B: 18

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 14


|
Votes for B: 18

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 15



Votes for B: 18

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 15



Votes for B: 19

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 16

T


Votes for B: 19

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 17

I


Votes for B: 19

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 18

I


Votes for B: 19

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 18

I

I
Votes for B: 20

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 18


|
Votes for B: 21

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 18


Votes for B: 22

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 18


Votes for B: 23

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 18


Votes for B: 24

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 19


Votes for B: 24

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 20


Votes for B: 24

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 20


Votes for B: 25

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 20


Votes for B: 26

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 21


Votes for B: 26

## Two Candidates Election with Uniform Prior

Accuracy: 60\%


Votes for A: 21


Votes for B: 27

## Increasing Number of Voters with Accuracy 60\%







## Condorcet Jury Theorem

## Theorem:

For an election with two candidates and $n$ voters, if the voters correctly identify the ground truth with probability $1 / 2<p \leq 1$ and do so independently, then the majority rule selects the ground truth with probability 1 as $n \rightarrow+\infty$.

- De Condorcet "Essai sur l'Application de l'Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix" (1785)
- Young "Condorcet's theory of voting" (1988)


## Condorcet Jury Theorem

## Theorem:

For an election with two candidates and $n$ voters, if the voters correctly identify the ground truth with probability $1 / 2<p \leq 1$ and do so independently, then the majority rule selects the ground truth with probability 1 as $n \rightarrow+\infty$.

This is the first application of the maximum likelihood approach that we know of!

- De Condorcet "Essai sur l'Application de l'Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix" (1785)
- Young "Condorcet's theory of voting" (1988)


## 2. Maximum Likelihood Approach



## Maximum Likelihood Approach

## Basic Definitions and First Results

## Likelihood

$$
L(\boldsymbol{V}, \theta)=\prod_{V \in \boldsymbol{V}} \mathbb{P}(V \mid \theta)
$$

## Likelihood

Set of ballots (Profile)

$$
L(\boldsymbol{V}, \theta)=\prod_{V \in \boldsymbol{V}} \mathbb{P}(V \mid \theta)
$$

## Likelihood

Set of ballots (Profile)


Parameter of the model (Ground truth)

## Likelihood

Set of ballots (Profile)


Parameter of the model (Ground truth)

Probabilistic model
(Noise model)

## Maximum Likelihood Estimator

$$
R(\boldsymbol{V})=\underset{\theta}{\arg \max } L(\boldsymbol{V}, \theta)=\underset{\theta}{\arg \max } \prod_{V \in \boldsymbol{V}} \mathbb{P}(V \mid \theta)
$$

## Maximum Likelihood Estimator

Maximum Likelihood Estimator
(Voting rule)
$R(\boldsymbol{V})=\underset{\theta}{\arg \max } L(\boldsymbol{V}, \theta)=\underset{\theta}{\arg \max } \prod_{\boldsymbol{V} \in \boldsymbol{V}} \mathbb{P}(V \mid \theta)$

## Maximum Likelihood Estimator



## Maximum Likelihood Estimator



## MLE and Classical Voting Setting

|  | MLE for Winner | not MLE for Winner |
| :---: | :---: | :---: |
| MLE for Ranking | Scoring rules: Borda, <br> veto, plurality... | Weird rules |
| not MLE for Ranking | STV | Bucklin, Copeland, <br> maximin, ranked pairs... |

- Conitzer and Sandholm "Common voting rules as maximum likelihood estimators" (2006)
- Conitzer, Rognlie, and Xia "Preference Functions that Score Rankings and Maximum Likelihood Estimation" (2009)


## Maximum Likelihood Approach

The Case of Approval Ballots

## Using Approval Ballots

Ground truth: $\sigma^{\star}$

## Using Approval Ballots

$$
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Ground truth: } \\
\sigma^{\star}
\end{array} \\
\text { Parametrizes } \\
Z_{\gamma}
\end{array}
$$

## Using Approval Ballots

| Ground truth: |
| :---: |
| $\sigma^{\star}$ |$\xrightarrow{\text { Parametrizes }}$

Noise model:

$$
\mathbb{P}\left(\sigma \mid \sigma^{\star}\right)=\frac{\gamma^{d\left(\sigma, \sigma^{\star}\right)}}{Z_{\gamma}}
$$

Set of rankings: $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

## Using Approval Ballots

| Ground truth: |
| :---: |
| $\sigma^{\star}$ |$\xrightarrow{\text { Parametrizes }}$

Noise model:

$$
\mathbb{P}\left(\sigma \mid \sigma^{\star}\right)=\frac{\gamma^{d\left(\sigma, \sigma^{\star}\right)}}{Z_{\gamma}}
$$

Set of rankings: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

Determines
Approval ballots: $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$

## Using Approval Ballots

$\underset{\sigma^{\star}}{\text { Ground truth: }} \xrightarrow{\text { Parametrizes }}$

Noise model:

$$
\mathbb{P}\left(\sigma \mid \sigma^{\star}\right)=\frac{\gamma^{d\left(\sigma, \sigma^{\star}\right)}}{Z_{\gamma}}
$$

Set of rankings: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

Determines


Approval ballots:
$\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$

> Approval winner $\underset{c \in \mathcal{C}}{\arg \max }|\{A \in \boldsymbol{A} \mid c \in V\}|$

## Using Approval Ballots

$\underset{\sigma^{\star}}{\text { Ground truth: }} \xrightarrow{\text { Parametrizes }}$

Noise model:

$$
\mathbb{P}\left(\sigma \mid \sigma^{\star}\right)=\frac{\gamma^{d\left(\sigma, \sigma^{\star}\right)}}{Z_{\gamma}}
$$

Set of rankings: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

Determines


Approval ballots:
$\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$

> Approval winner $\underset{c \in \mathcal{C}}{\arg \max }|\{A \in \boldsymbol{A} \mid c \in V\}|$

Is it a MLE for the noise model?

## Using Approval Ballots

$\underset{\sigma^{\star}}{\text { Ground truth: }} \xrightarrow{\text { Parametrizes }}$

Noise model:

$$
\mathbb{P}\left(\sigma \mid \sigma^{\star}\right)=\frac{\gamma^{d\left(\sigma, \sigma^{\star}\right)}}{Z_{\gamma}}
$$

Set of rankings: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

Determines


Approval ballots:
$\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$

> Approval winner $\underset{c \in \mathcal{C}}{\arg \max }|\{A \in \boldsymbol{A} \mid c \in V\}|$

Is it a MLE for the noise model?

## Using Approval Ballots

## Theorem:

With the Kendall tau distance the set of MLE best alternatives coincides with the set of approval winners.

- Procaccia and Shah "Is Approval Voting Optimal Given Approval Votes?" (2015)


## Using Approval Ballots

## ThEOREM:

With the Kendall tau distance the set of MLE best alternatives coincides with the set of approval winners.

With plurality or veto ballots, approval voting is an MLE for every "relevant" distance.

- Procaccia and Shah "Is Approval Voting Optimal Given Approval Votes?" (2015)


## Looking for Specific Objectives

Select $k$ alternatives so to maximize the probability of containing:
(1) the top alternative of the ground truth ranking,
(2) the top $k$ alternatives of the ground truth ranking,
( ) the top $k$ alternatives of the ground truth ranking in the right order.

- Procaccia, Reddi, and Shah "A maximum likelihood approach for selecting sets of alternatives" (2012)


## Looking for Specific Objectives

Select $k$ alternatives so to maximize the probability of containing:
(1) the top alternative of the ground truth ranking,
(2) the top $k$ alternatives of the ground truth ranking,
(3) the top $k$ alternatives of the ground truth ranking in the right order.

## Theorem:

All three objectives are NP-hard to achieve under Mallows' model.

They are tractable in very noisy situation $(\gamma \approx 1)$.

- Procaccia, Reddi, and Shah "A maximum likelihood approach for selecting sets of alternatives" (2012)


## 3. Sample Complexity



## Sample Complexity

Some Definitions

## Accuracy of a Rule

$$
\operatorname{Acc}(R, k)=\quad\left(\sum_{\boldsymbol{v} \in \mathcal{L}(A)^{k}} \mathbb{P}\left(\boldsymbol{V} \mid \sigma^{\star}\right) \mathbb{P}\left(R(\boldsymbol{V})=\sigma^{\star}\right)\right)
$$

## Accuracy of a Rule

Accuracy of rule $R$
with $k$ samples
$\operatorname{Acc}(R, k)=$
$\left(\sum_{\boldsymbol{V} \in \mathcal{L}(A)^{k}} \mathbb{P}\left(\boldsymbol{V} \mid \sigma^{\star}\right) \mathbb{P}\left(R(\boldsymbol{V})=\sigma^{\star}\right)\right)$

## Accuracy of a Rule



## Accuracy of a Rule



## Accuracy of a Rule



## Accuracy of a Rule

$$
\begin{gathered}
\begin{array}{c}
\text { Accuracy of rule } R \\
\text { with } k \text { samples }
\end{array} \begin{array}{c}
\text { Probability of observing } \boldsymbol{V} \\
\text { given ground truth } \sigma^{\star}
\end{array} \\
\operatorname{Acc}(R, k)=\min _{\sigma^{\star} \in \mathcal{L}(A)}\left(\sum_{\boldsymbol{V} \in \mathcal{L}(A)^{k}} \mathbb{P}^{2}\left(\boldsymbol{V} \mid \sigma^{\star}\right) \mathbb{P}\left(R(\boldsymbol{V})=\sigma^{\star}\right)\right) \\
\text { A profile of } \left.\begin{array}{l}
\text { Probability for } R \text { to } \\
\text { size } k \\
\text { return } \sigma^{\star} \text { on } \boldsymbol{V}
\end{array}\right)
\end{gathered}
$$

## Accuracy of a Rule



## Sample Complexity

$$
\begin{gathered}
\operatorname{Acc}(R, k)=\min _{\sigma^{\star} \in \mathcal{L}(A)}\left(\sum_{\boldsymbol{V} \in \mathcal{L}(A)^{\star}} \mathbb{P}\left(\boldsymbol{V} \mid \sigma^{\star}\right) \mathbb{P}\left(R(\boldsymbol{V})=\sigma^{\star}\right)\right) \\
\mathcal{S C}(R, \epsilon)=\min \{k \mid \operatorname{Acc}(R, k) \geq 1-\epsilon\}
\end{gathered}
$$

## Sample Complexity

Sample Complexity in Practice

## The Kemeny Rule is Optimal for Mallows' Model

## Theorem:

Given $\epsilon>0$, the Kemeny rule with uniform tie-breaking is such that for Mallows' mode and for every rule $R$, we have:

$$
\mathcal{S C}(K E M, \epsilon) \leq \mathcal{S C}(R, \epsilon)
$$

- Caragiannis, Procaccia, and Shah "When do Noisy Votes Reveal the Truth?" (2013)


## Number of Samples Required

## Theorem:

For any $\epsilon>0$, the Kemeny rule returns the ground truth with probability $1-\epsilon$ given $\mathcal{O}(\ln (|A| / \epsilon))$ and no rule can do better.

- Caragiannis, Procaccia, and Shah "When do Noisy Votes Reveal the Truth?" (2013)


## Number of Samples Required

## Theorem:

For any $\epsilon>0$, the Kemeny rule returns the ground truth with probability $1-\epsilon$ given $\mathcal{O}(\ln (|A| / \epsilon))$ and no rule can do better.

Also holds for pairwise-majority consistent rules.

- Caragiannis, Procaccia, and Shah "When do Noisy Votes Reveal the Truth?" (2013)


## Scoring Rules

- The plurality rule sometimes requires exponentially many samples for Mallows' model.
- Positional scoring rules with distinct weights require a polynomial number of samples from Mallows' model.
- Caragiannis, Procaccia, and Shah "When do Noisy Votes Reveal the Truth?" (2013)


## 4. Robustness to Noise



## Robustness to Noise

Definitions, Again!

## Accuracy in the Limit

## DEFINITION:

A rule $R$ is accurate in the limit for a noise model if for every $\epsilon>0$, there exists $n_{\epsilon}$ such that for every profile of size at least $n_{\epsilon}, R$ returns the ground truth with probability $1-\epsilon$.

## Monotone Robust Rules

## Definition:

A noise model is $d$-monotonic if for any $\sigma, \sigma^{\prime}$, we have:

$$
\mathbb{P}\left(\sigma \mid \sigma^{\star}\right)>\mathbb{P}\left(\sigma^{\prime} \mid \sigma^{\star}\right) \Longleftrightarrow d\left(\sigma, \sigma^{\star}\right)<d\left(\sigma^{\prime}, \sigma^{\star}\right)
$$

DEfinition:
A rule is monotone robust against $d$ if it is accurate in the limit for every $d$-monotonic noise model.

## Robustness to Noise

Pairwise Majority Consistent Rules

## Pairwise Majority Consistency



## Definition:

A rule $R$ is PM -consistent if it outputs the Condorcet order when the PM graph is complete and acyclic.

## Majority Concentric Distances



## Majority Concentric Distances



## Majority Concentric Distances



## DEfinition:

A distance $d$ if majority concentric if for every $\sigma$, every $a, b$ such that $a \succ_{\sigma} b$ and every $k$ we have:

$$
\left|\eta_{a \succ b}^{k}(\sigma)\right| \geq\left|\eta_{b \succ a}^{k}(\sigma)\right|
$$

## Monotone Robust PM Consistent Rules

## Theorem:

All PM consistent rules are monotone robust against $d$ if and only if $d$ is majority concentric.

- Caragiannis, Procaccia, and Shah "When do Noisy Votes Reveal the Truth?" (2013)


## Multiwinner voting

## Theorem:

Multiwinner approval voting is $d$-monotone robust if and only if $d$ is majority concentric.

- Caragiannis, Kaklamanis, Karanikolas, and Krimpas "Evaluating ApprovalBased Multiwinner Voting in Terms of Robustness to Noise" (2020)


## Robustness to Noise

Gloablly Robust Rules

## Uniquely Robust Rules

## Theorem:

Modal ranking is the only generalized scoring rule that is monotone robust against all distances.

- Caragiannis, Procaccia, and Shah "Modal Ranking: A Uniquely Robust Voting Rule." (2014)
- Caragiannis, Kaklamanis, Karanikolas, and Krimpas "Evaluating ApprovalBased Multiwinner Voting in Terms of Robustness to Noise" (2020)


## Uniquely Robust Rules

## Theorem:

Modal ranking is the only generalized scoring rule that is monotone robust against all distances.

## Theorem:

Modal counting is the only ABCC multiwinner rule that is monotone robust against all distances.

- Caragiannis, Procaccia, and Shah "Modal Ranking: A Uniquely Robust Voting Rule." (2014)
- Caragiannis, Kaklamanis, Karanikolas, and Krimpas "Evaluating ApprovalBased Multiwinner Voting in Terms of Robustness to Noise" (2020)


## 5. Conclusion and Future Directions



## Concepts for Epistemic Social Choice

- Maximum Likelihood Approach: Which outcome should we select given that agents form their preferences following a specific noise model?


## Concepts for Epistemic Social Choice

- Maximum Likelihood Approach: Which outcome should we select given that agents form their preferences following a specific noise model?
- Sample Complexity: How many samples do we need to achieve a suitable accuracy?


## Concepts for Epistemic Social Choice

- Maximum Likelihood Approach: Which outcome should we select given that agents form their preferences following a specific noise model?
- Sample Complexity: How many samples do we need to achieve a suitable accuracy?
- Robustness to Noise: Does the rule return the ground truth with high probability when there are infinitely many ballots? Is it true for classes of noise model based on a distance?


## Missing Parts

- Generalizations of the Condorcet Jury Theorem
- Epistemic social choice literature in Economics, Political Science ....
- Other estimators, criteria, objectives, ...
- Bovens and Rabinowicz "Democratic answers to complex questions-an epistemic perspective" (2006)
- Pivato "Voting Rules as Statistical Estimators" (2013)
- Xia "Statistical Properties of Social Choice Mechanisms" (2014)
- Elkind and Slinko "Rationalizations of Voting Rules" (2016)
- Pivato "Realizing epistemic democracy" (2019)


## Possible Future Directions

- Developing epistemic approaches in more complex voting settings:
- Multiwinner voting: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)


## Possible Future Directions

- Developing epistemic approaches in more complex voting settings:
- Multiwinner voting: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)
- Settings with Constrained Outcomes: Participatory Budgeting, Judgment Aggregation...


## Possible Future Directions

- Developing epistemic approaches in more complex voting settings:
- Multiwinner voting: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)
- Settings with Constrained Outcomes: Participatory Budgeting, Judgment Aggregation...
- Investigating different probability models with non-uniform distributions, dependencies to other features of the models...


## Possible Future Directions

- Developing epistemic approaches in more complex voting settings:
- Multiwinner voting: Generalizing the work of Caragiannis et al. (2020) to non-ABCC rules (Phragmen for instance)
- Settings with Constrained Outcomes: Participatory Budgeting, Judgment Aggregation...
- Investigating different probability models with non-uniform distributions, dependencies to other features of the models...
- Looking into the links between various complexity classes: elicitation complexity, sample complexity, communication complexity...

