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We initiate the study of voting rules for participatory budgeting using the
so-called epistemic approach, where one interprets votes as noisy reflections
of some ground truth regarding the objectively best set of projects to fund.
Using this approach, we first show that both the most studied rules in the
literature and the most widely used rule in practice cannot be justified on
epistemic grounds: they cannot be interpreted as maximum likelihood esti-
mators, whatever assumptions we make about the accuracy of voters. Focus-
ing then on welfare-maximising rules, we obtain both positive and negative
results regarding epistemic guarantees.

1 Introduction

The term participatory budgeting (PB) has been used to describe a range of mechanisms
that directly involve citizens in public spending decisions (Cabannes, 2004). The basic
idea is that people can vote on grassroots projects (e.g., building a playground or funding
a cultural event), each of which has a certain cost. The most popular projects—that fit
a given budget constraint—then get funded. In recent years, PB has flourished around
the world, making it one of the most popular tools of participatory democracy. At the
same time, it also has received a lot of attention in the literature on (computational)
social choice (Aziz and Shah, 2020; Rey and Maly, 2023).

Given the votes of the citizens, it is not always obvious how to decide which projects to
fund (in other words, there are many different voting rules one could consider using). The
common approach to choosing a voting rule is the normative approach, where we encode
normatively desirable properties of voting rules, e.g., properties related to fairness, in
the form of axioms and then analyse to what extent a given voting rule will satisfy those
axioms. In this paper, we instead explore what is known as the epistemic approach—
or truth-tracking approach—to the analysis and design of voting rules for PB. Both
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approaches play a central role in the broader field of computational social choice (Brandt,
Conitzer, Endriss, Lang and Procaccia, 2016). But in the specific context of PB, the
epistemic approach may, at first sight, seem less natural a choice. So let us briefly outline
why we nonetheless believe that it is important to explore its potential.

One reason is that, even in the familiar setting of PB with citizens voting for projects
they personally would like to receive public funding, we might interpret these votes as
evidence for objective quality. Indeed, whether a given project is a success will often
become clear only some time after it has been realised: Will local citizens actually use
the compost bins? Will the number of mosquitoes go down? Will the new speed camera
reduce the number of accidents?1 So we might think of the citizens casting their votes
as agents with bounded rationality who enjoy a noisy view of this ground truth. They
do not know what the best set of projects to fund is, but each of them is more likely to
vote for a good rather than a bad set of projects.

Furthermore, PB as a means to select projects to receive public funding is but one
example of a selection process of costly alternatives. For some other such processes—
that are, at least mathematically, equivalent to PB—the existence of a ground truth
may be more obvious. Consider, for instance, the case of the Eterna platform.2 On this
collaborative platform, users can submit different ways of folding a given protein. A
subset of the proposed configurations is then synthesised in a laboratory to determine
which are most stable. One can think of this as a PB process: the projects are the
different protein foldings; their cost is the cost of synthesising them; the budget limit is
the amount of money that is allocated to this process; and finally, the protein foldings
submitted by a user constitute their approval ballot. Mathematically speaking, this is
thus a well-defined PB process. Moreover, there is a clear ground truth here: a set of
objectively most stable protein configurations. Interestingly, this is also the motivating
example of the first epistemic analysis of multi-winner voting rules,3 though in a setting
without costs (Procaccia, Reddi and Shah, 2012).

A last example is that of a selection committee for research grant proposals. In such a
committee, the members have to decide which of the grants should be funded. The grants
typically have different costs, and there is a maximum amount of money that can be
allocated. Then one might argue that the proposals have a “ground truth” probability of
success that can only be observed a posteriori. At selection time, the committee members
observe noisy signals regarding this ground truth through the reports of reviewers, and
they need to make a decision based on this information.

If we have a clear idea how these noisy views on the ground truth are generated (votes

1All these examples are taken from projects that were brought to the vote in Toulouse 2019; see jepar-
ticipe.metropole.toulouse.fr/processes/bp2019 for more details, and in particular the file “Catalogue
des 30 idées soumises au vote”. The data is also hosted on the website pabulib.org (Faliszewski,
Flis, Peters, Pierczyński, Skowron, Stolicki, Szufa and Talmon, 2023), though the description of the
projects is not available there.

2See eternagame.org and wikipedia.org/wiki/EteRNA for more information.
3In multi-winner voting with approval ballots (Lackner and Skowron, 2022), we ask each voter which of

the candidates up for election they approve of and then, for some fixed k, need to choose a committee
of k candidates. This scenario is mathematically equivalent to PB when all projects have the same
cost.
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that are cast in the context of PB, protein configurations that are proposed for the
EterRNA platform, or approvals submitted for some grant proposals)—that is, if we
have a well-defined noise model—we, in principle, are able to design a voting rule that
maximises the likelihood of returning the ground truth, i.e., the best set of projects that
fit our budget. Of course, in practice we do not have access to this noise model. Still,
if a natural voting rule turns out to be such a maximum likelihood estimator (MLE) for
a natural choice of noise model, then we can interpret this as an argument for using
that rule. Similarly, if we can prove that for a given rule there does not exist any noise
model that would make that rule an MLE, then that rule will be less suitable in contexts
where it is reasonable to assume that there exists some form of ground truth regarding
the right decision to be taken.

Contribution. We first analyse the rule overwhelmingly used in practice around the
world—the greedy cost approval rule—as well as the rules most studied in the recent
literature—the Method of Equal Shares (Peters, Pierczynski and Skowron, 2021; Brill,
Forster, Lackner, Maly and Peters, 2023) and the Sequential Phragmén Rule (Los,
Christoff and Grossi, 2022). Using a necessary condition provided by Conitzer and
Sandholm (2005), we prove that none of these rules can be interpreted as an MLE, even
for instances where all projects have the same cost (corresponding to multi-winner voting
instances).

We then turn to a family of rules that all satisfy the aforementioned necessary condi-
tion: additive argmax rules. These can be thought of as welfare-maximising rules. We
focus on eight specific rules based on either utilitarian or Nash social welfare. In the
case of utilitarian social welfare, we show that it is impossible to find a noise model for
which the most natural rules would be MLEs in the general case. For Nash welfare, the
picture is brighter, since for two rules we are able to identify noise models under which
they are MLEs.

Still, the overall picture pained by our analysis is largely negative, demonstrating that
it is difficult to design voting rules for PB with good epistemic performance, certainly if
this requirement comes on top of other, particularly common normative, requirements.
Identifying conditions under which more positive results can be achieved—and ideally
conditions that can be satisfied for specific application scenarios where the epistemic per-
spective is most relevant—therefore presents itself as an important challenge for future
work in the field.

Related work. The study of PB rules is part of social choice theory, which more gen-
erally deals with the design and analysis of voting rules for different kinds of scenarios.
Given that for every application domain many different rules can be—and have been—
devised, it can be hard for the decision maker to select the rule to be used. To assist
in this choice, two main approaches have been developed. The first one, the normative
or axiomatic approach (Arrow, 1951; Thomson, 2001), tries to identify voting rules that
satisfy certain normative requirements. The second one, the epistemic approach (Elkind
and Slinko, 2016; Pivato, 2019), seeks out rules that can recover a ground truth, assum-
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ing that the votes received are noisy estimates of that ground truth. It is the latter
approach we follow here.

Formal work on PB to date instead has followed the axiomatic approach, with a special
focus on fairness (Aziz, Lee and Talmon, 2018; Peters, Pierczynski and Skowron, 2021;
Hershkowitz, Kahng, Peters and Procaccia, 2021; Lackner, Maly and Rey, 2021; Los,
Christoff and Grossi, 2022; Brill, Forster, Lackner, Maly and Peters, 2023), incentive
compatibility (Fain, Goel and Munagala, 2016; Freeman, Pennock, Peters and Vaughan,
2021; Goel, Krishnaswamy, Sakshuwong and Aitamurto, 2019; Rey, Endriss and de Haan,
2021), and monotonicity requirements (Talmon and Faliszewski, 2019; Baumeister, Boes
and Seeger, 2020; Rey, Endriss and de Haan, 2020). We refer the reader to the survey
by Rey and Maly (2023) for more details.

The epistemic approach has been first applied to the standard voting model (Young,
1995; Conitzer and Sandholm, 2005; Caragiannis, Procaccia and Shah, 2014). Later on,
other social choice scenarios have been investigated through the epistemic lens, notably
multi-winner elections (Procaccia, Reddi and Shah, 2012; Caragiannis, Procaccia and
Shah, 2016), and judgment aggregation (Bovens and Rabinowicz, 2006; Bozbay, Diet-
rich and Peters, 2014; Terzopoulou and Endriss, 2019). To the best of our knowledge,
the only epistemic study of PB is the one section dedicated to the topic by Goel, Krish-
naswamy, Sakshuwong and Aitamurto (2019), though in the context of divisible PB, i.e.,
when projects can be partially funded. Interestingly, they show that knapsack voting—a
PB rule that resembles the greedy cost approval rule in the divisible setting—can be
interpreted as a maximum likelihood estimator, while we will see that this is not the
case for the greedy cost approval rule in the context of indivisible PB.

2 Preliminaries

In this section, we recall the standard model of PB, used in much of the literature (see,
e.g., Talmon and Faliszewski, 2019; Aziz and Shah, 2020; Rey and Maly, 2023), and then
define what it means for a PB rule to be a maximum likelihood estimator (MLE).

2.1 Participatory Budgeting

A PB problem is described by an instance I = 〈P, c, b〉, where P is the set of available
projects, c : P → N is the cost function—mapping any given project p ∈ P to its cost
c(p) ∈ N—and b ∈ N is the budget limit. We write c(P ) instead of

∑
p∈P c(p) for sets

of projects P ⊆ P. For a given PB instance, we ask several agents to each submit an
approval ballot A ⊆ P, resulting in a vector A of ballots, one for each agent. Such a
vector of approval ballots is called a profile. Given two profiles A and A′, we use A⊕A′

to denote the profile obtained by concatenating them.
Given an instance I = 〈P, c, b〉, we need to select a subset of projects π ⊆ P to

implement. Such a budget allocation π has to be feasible, i.e., we require c(π) ≤ b. Let
A(I) = {π ⊆ P | c(π) ≤ b} be the set of feasible budget allocations for I. Moreover, let
AEX (I) be the set of all exhaustive budget allocations for I, i.e., of allocations π ∈ A(I)
for which there is no project p ∈ P \ π such that c(π ∪ {p}) ≤ b.
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Computing budget allocations is done by means of PB rules. An irresolute PB rule F
is a function that takes as input a PB instance I and a profile A over I, and that returns
a nonempty set of feasible budget allocations F (I,A) ⊆ A(I). A rule is exhaustive if
F (I,A) ⊆ AEX (I) for all I and A.

Some of our results will apply only to unit-cost instances. An instance I = 〈P, c, b〉 is
a unit-cost instance if there exists an ` ∈ N such that (i) c(p) = ` for all projects p ∈ P
and (ii) b ≡ 0 mod `. This restriction is particularly interesting since unit-cost instances
are equivalent to multi-winner voting problems where one needs to elect a committee of
some fixed size k (Faliszewski, Skowron, Slinko and Talmon, 2017). Candidates can be
thought of as projects of cost `, so under a budget limit of b = k · ` exhaustive budget
allocations correspond to such committees.

2.2 The Truth-Tracking Perspective

Under the truth-tracking perspective, we assume that, for every given instance I, there
exists an objectively best feasible budget allocation, the so-called ground truth π?, and
we would like every reasonable rule to select π?. The ground truth is not known, neither
to the agents nor to the decision maker. We will thus assess the quality of PB rules
based on their ability to retrieve the ground truth given noisy votes.

Formally, a noise model M is a generative model that produces random approval bal-
lots for a given instance and ground truth. We represent it as a probability distribution
over all approval ballots. For a given instance I = 〈P, c, b〉, ground truth π? ∈ A(I),
and approval ballot A ⊆ P, we denote by PM(A | π?, I) the probability for the noise
modelM to generate ballot A given I and π?. For profiles generated by the noise model,
ballots are drawn identically and independently from M.

Suppose the noise model M indicates how the voters form their preferences for any
given ground truth.4 Then a good rule should select the outcome that most likely would
have generated the observed profile we observe if it were the ground truth plugged
into M. This is the maximum likelihood estimator (MLE) for M.

Definition 1 (Maximum likelihood estimators). For a noise model M, the likelihood of
a profile A over the instance I and a budget allocation π ∈ A(I) is defined as:

LM(A, π, I) =
∏
A∈A

PM(A | π, I).

A PB rule F is said to be the MLE for M, if for every instance I and every profile A
we have:

F (I,A) = argmax
π?∈A(I)

LM(A, π?, I).

4We stress that here we are making the (implicit) assumption that every voter’s ballot is generated
by the same noise model. This simplifying assumption, though common in the literature (Elkind
and Slinko, 2016), does not account for the fact that different voters may have different expertise.
Specifically, in the context of PB, a voter living in a specific district may be more likely to accurately
judge the quality of a project based in the same district than a voter who lives elsewhere.
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In the context of the standard model of voting theory, Conitzer and Sandholm (2005)
identified a necessary condition for a voting rule to be interpretable as an MLE: it should
satisfy what we are going to call weak reinforcement. This result straightforwardly carries
over to the PB setting.

Definition 2 (Weak reinforcement). A PB rule F is said to be satisfying weak rein-
forcement if and only if, for every instance I and every two profiles A and A′, we have:

F (I,A) = F (I,A′) =⇒ F (I,A⊕A′) = F (I,A).

Lemma 1 (Conitzer and Sandholm, 2005). If a PB rule F does not satisfy weak rein-
forcement, then there exists no noise model M for which F is the MLE.

Note that this result applies for any set of possible ground truths, so also if we assume
the ground truth to be exhaustive.

As a first application of this lemma, let us consider what perhaps is the most widely
used rule in real-world PB elections, namely the greedy cost approval rule Fgreed (Goel,
Krishnaswamy, Sakshuwong and Aitamurto, 2019; Aziz and Shah, 2020). Under this
rule, we select projects in order of the number of approvals they receive, skipping over
any projects that would lead us to exceed the budget.5 Note that Fgreed is exhaustive.
Unfortunately, we can easily show that it cannot be interpreted as an MLE.

Proposition 2. There exists no noise model M such that the greedy cost approval rule
Fgreed is the MLE for M.

Proof. Consider an instance I with three projects denoted by p1, p2 and p3, a budget
limit of b = 4, and costs as shown in the table below. Moreover, consider two profiles A
and A′ in which the approval scores are as presented below.

Cost
Approval score

in A
Approval score

in A′
Approval score

in A⊕A′

p1 2 10 1 11
p2 2 1 10 11
p3 3 9 9 18

One can easily check that Fgreed would return {{p1, p2}} on both A and A′. However,
on the joint profile A⊕A′, it would return {{p3}}. Weak reinforcement is thus violated.
The claim now follows from Lemma 1.

3 Proportional PB Rules

A large part of recent research on PB has been devoted to the study of proportional
rules, i.e., rules that treat groups of agents fairly. In this section, we focus on the most

5The name of the rule is linked to the fact that it can be thought of as approximating the maximum
utilitarian social welfare under the cost satisfaction function (Rey and Maly, 2023). These concepts
will be formally introduced in Section 4.2.
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prominent ones—Sequential Phragmén (Los, Christoff and Grossi, 2022; Brill, Forster,
Lackner, Maly and Peters, 2023) and approval-based variants of the Method of Equal
Shares (MES) (Peters, Pierczynski and Skowron, 2021)—and show that they also cannot
be interpreted as MLEs.

Definition 3 (Sequential Phragmén). Given an instance I and a profile A, the Se-
quential Phragmén rule constructs budget allocations π using the following continuous
process.

Initially, π is the empty set. Voters receive money in a virtual currency. They all
start with a budget of 0 and that budget continuously increases as time passes. At time t
a voter will have received an amount t of money. For any time t, let P ?t be the set
of projects p ∈ P for which the approvers together have at least c(p) money available.
As soon as, for a given t, the set P ?t is non-empty, if there exists a p ∈ P ?t such that
c(π ∪ {p}) > b, the process stops; otherwise one project from P ?t is selected, the budget
of its approvers is set to 0, and the process resumes.

The outcome of Sequential Phragmén is the set of all budget allocations constructed
by the procedure above (for all possible ways of breaking ties between the projects in P ?t ).

Observe that, due to the fact that each voter’s budget increases continuously, the ap-
provers whose project p is selected at a given time t in fact will have accumulated exactly
c(p), not more, which justifies setting their budgets back all the way to 0. Also note
that with the above stopping condition—required to guarantee a property known as
priceability (Los, Christoff and Grossi, 2022)—Sequential Phragmén is not exhaustive.
But it is exhaustive on unit-cost instances.

Unfortunately, whatever assumptions we are willing to make regarding the noise model
generating the approval sets of voters, Sequential Phragmén cannot be used to track the
ground truth, not even for unit-cost instances.

Proposition 3. There exists no noise model M such that Sequential Phragmén is the
MLE for M, not even on unit-cost instances with the additional assumption that the
ground truth is exhaustive.

Proof. Consider an instance I with four projects denoted by p1, p2, p3, and p4, all of
cost 1, and budget limit of b = 3. We consider two profile, A1 and A2, as presented
below, where A1 is on the left and A2 is on the right.

p1 p2 p3 p4

Cost 1 1 1 1

A1
1 3 7 7 7

A1
2 3 7 3 3

A1
3 7 3 3 3

A1
4 7 3 3 3

A1
5 7 3 3 3

b = 3

p1 p2 p3 p4

Cost 1 1 1 1

A2
1 7 3 7 7

A2
2 3 7 3 7

A2
3 3 7 3 7

A2
4 3 7 7 3

A2
5 3 7 3 3

b = 3
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We claim that on both profile A1 and profile A2, Sequential Phragmén outputs a single
budget allocation, namely π = {p1, p3, p4}. Remember that, in the unit-cost setting,
Sequential Phragmén is exhaustive. The budget allocation π indeed is exhaustive.

For A1, after 1/2 units of money have been distributed, both p3 and p4 will have
been bought at a price of 1/4 each. Once an additional 1/4 units of money have been
injected, project p1 is bought as well, making π the unique budget allocation returned
by Sequential Phragmén.

For A2, first p1 is bought at a price of 1/4, then p3 at a price of 1/3. Finally, after 1/3
additional units of money have been distributed, project p4 is bought (at that time, the
supporters of project p2 have collected 1/4 + 2/3 < 1 money). The final outcome is thus
indeed {π}.

Now, consider the joint profile A3 = A1⊕A2, and let us detail the run of Sequential
Phragmén on I and A3. The first project to be bought is p3 at price 1/7. Then, once an
extra 5/42 units of money have been distributed, project p1 is bought as well. At that
time, the supporters of p4 who do not approve of p2 have no money since they approve
of p1. On the other hand, the only supporter of p2 who does not approve of p4 has
a strictly positive amount of money. Project p2 will then be the last project selected
(after another 2/21 units of money have been injected). Overall, the outcome will be
{{p1, p2, p3}} 6= {π}.

We have thus proven that the Sequential Phragmén rule fails weak reinforcement.
Lemma 1 then concludes the proof. Note that all budget allocations we considered are
exhaustive; the result thus also applies if we only focus on exhaustive ground truths.

The same bad news apply to the MES-based rules. These rules are parametrised by a
measure of the satisfaction of the voters. We call satisfaction function (on singletons),
any mapping from projects p to satisfaction levels µ(p) ∈ R>0.

6 We can now define MES
with respect to satisfaction function µ.

Definition 4 (MESµ). Given an instance I, a profile A = (A1, . . . , An) with n agents,
and a satisfaction function µ, MESµ constructs budget allocations π, initially empty,
iteratively as follows. Every agent i is initially assigned a budget bi = b/n of virtual
money. Given a budget allocation π, a project p ∈ P \ π is said to be α-affordable, for
α ∈ R≥0 if: ∑

i | p∈Ai

min(bi, α · µ(p)) ≥ c(p).

At a given round with current budget allocation π, if no project is α-affordable for any
α, MESµ terminates. Otherwise, let P ? be the set of projects that are α∗-affordable for
a minimum α∗. The rule selects one project p ∈ P ? (π is updated to π ∪{p}), and every
approver i of p sees their budget reduced by min(bi, α · µ(p)).

The outcome of MESµ is the set of all budget allocations constructed by the procedure
above (for all possible ways of breaking ties between the projects in P ?).

6Note that Brill, Forster, Lackner, Maly and Peters (2023) give a more complete definition of satisfac-
tion functions. Since we only need to discuss satisfaction of single projects here, we simplified the
definition.
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Note that MESµ fails to be an exhaustive rule, for any satisfaction function µ and even
on unit-cost instances.

We show that for no µ can MESµ be interpreted as an MLE.

Proposition 4. For any given satisfaction function µ, there is no noise model M such
that MESµ is the MLE for M, not even on unit-cost instances.

Proof. Consider an instance I with two projects denoted by p1 and p2, both of cost 1,
and a budget limit b = 2. Let µ be an arbitrary satisfaction function.

Consider the two profiles A1 = ({p1}, {p2}) and A2 = ({p1, p2}, {p1, p2}). We claim
that on both of these profiles, MESµ would return π = {{p1, p2}}. Indeed, on A1

both agents receive 1 unit of money and can both afford the project they approve
of. On A2 both agents approve of all the projects and can afford them. Now, for
A3 = ({p1}, {p2}, {p1, p2}, {p1, p2}) = A1⊕A2, we claim that MESµ would return ei-
ther {{p1}}, {{p2}}, or {{p1}, {p2}}. Here the initial budget is 1/2 for each agent. Thus,
the approvers of p1 collectively have 3/2 units of money, and the same is true for p2. Since
µ(p) > 0 for both p1 and p2 (by definition of satisfaction functions) and since we can
choose α arbitrarily large, this implies that MESµ would select either p1 or p2 in the first
round. Let p? be the selected project and p the other project. To buy p?, all its approvers
need to pay 1/3. The approvers of p are thus now left with 1/2+2·(1/2−1/3) = 1/2+1/3 < 1,
which is not enough to afford p. There is thus no way for MESµ to return {{p1, p2}} on
A3.

We have thus shown that MESµ fails weak reinforcement. Lemma 1 then concludes
the proof.

Note that for the proofs of both the results in this section, the outcomes on the initial
profiles are always disjoint from the outcomes on the joint profiles. This implies that
even resolute versions of the rules (obtained by introducing some form of tie-breaking),
or any refinement, would also fail weak reinforcement.

4 Monotonic Argmax Rules

As we have seen, our first obstacle to finding rules that are MLEs is that none of the
proportional rules we considered satisfy weak reinforcement. Aiming for more positive
results, we will now follow a different approach: instead of checking whether known
PB rules do satisfy weak reinforcement, we will start from rules we know satisfy it, and
investigate their epistemic abilities. To this end, we will thus focus on monotonic argmax
rules, a large class of rules, all of which satisfy weak reinforcement. We start by defining
both what an argmax rule is and what makes such a rule monotonic.

Definition 5 (Monotonic Argmax Rules). A PB rule F is called an argmax rule if there
exists a function f , taking as input an instance I, a profile A, and a budget allocation
π, and returning a number f(I,A, π) ∈ R, such that for all instances I and all profiles
A, we have:

F (I,A) = argmax
π∈A(I)

f(I,A, π).
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An argmax rule defined via the function f is called monotonic if for every two profiles
A and A′ and every two budget allocations π and π′, the following two conditions hold:

1.
f(I,A, π) < f(I,A, π′)
f(I,A′, π) < f(I,A′, π′)

}
=⇒ f(I,A⊕A′, π) < f(I,A⊕A′, π′),

2.
f(I,A, π) = f(I,A, π′)
f(I,A′, π) = f(I,A′, π′)

}
=⇒ f(I,A⊕A′, π) = f(I,A⊕A′, π′).

Note that every rule is an argmax rule—f can simply be the indicator function on the
outcome of the rule for a given instance and profile—but not all rules are monotonic.

Are the monotonic argmax rules good candidates for being MLEs? Yes, they are, as
we can show that monotonic argmax rules all satisfy weak reinforcement.

Proposition 5. Every monotonic argmax rule satisfies weak reinforcement.

Proof. Consider the monotonic argmax rule F defined by the function f . Let I be an
instance, and A and A′ two profiles over I such that F (I,A) = F (I,A′). We show that
we also have F (I,A⊕A′) = F (I,A).

Consider a budget allocation π ∈ F (I,A). Since F is an argmax rule, for all π′ ∈ A(I)\
F (I,A), we know that f(I,A, π) > f(I,A, π′). This also holds for A′. By the definition
of a monotonic argmax rule, we immediately get that f(I,A⊕A′, π) > f(I,A⊕A′, π′).

Moreover, for any two budget allocations π, π′ ∈ F (I,A), we have f(I,A, π) =
f(I,A, π′). The same also holds for A′. Since F is monotonic, we thus immediately
get that f(I,A⊕A′, π) = f(I,A⊕A′, π′).

Overall, we proved that (i) no budget allocation that was winning under A or A′ is
dominated under A⊕A′, and (ii) that all budget allocations that were winning under A
and A′ all have the same score. It is then immediate that F (I,A⊕A′) = F (I,A).

In what follows we will introduce and study several concrete examples of monotonic
argmax rules, based either on the Nash or on the utilitarian social welfare.

4.1 Nash Social Welfare

We first study rules based on the Nash social welfare. It tries to reach balanced outcomes
by measuring the score of a budget allocation as the product of the agents’ levels of
satisfaction. The concept of Nash social welfare provides strong guarantees in the context
of the fair allocation of indivisible items (Caragiannis, Kurokawa, Moulin, Procaccia,
Shah and Wang, 2019). It has also been identified as an appealing rule for PB (Rosenfeld
and Talmon, 2021).

4.1.1 Cardinality and Cost Satisfaction

We first consider two common measures of satisfaction: based on the cardinality and
on the cost of approved and selected projects (Talmon and Faliszewski, 2019; Rey and
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Maly, 2023). This gives rise to two argmax rules, FNapp and FNcost , defined via the following
functions:

fNapp(I,A, π) =

{∑
A∈A log(|A ∩ π|) if for all A′ ∈ A, |A′ ∩ π| 6= 0,

0 otherwise.

fNcost(I,A, π) =

{∑
A∈A log(c(A ∩ π)) if for all A′ ∈ A, c(A′ ∩ π) 6= 0,

0 otherwise.
.

It can be checked that these two argmax rules are indeed monotonic. From Proposition 5,
we thus know that they satisfy weak reinforcement. Note that one would need to take
the exponential of these function to make the Nash social welfare appear.

Interestingly, under the common and natural assumption that all projects are approved
by at least one agent, these two rules are exhaustive.

We start our investigation by introducing a noise model, denoted byMNcost , for which
for all I, A and π?, we have:

PMNcost
(A | π?, I) =

1

ZNcost
π?

c(A ∩ π?),

where, ZNcost
π? is a suitable normalisation factor ensuring that MNcost is a well-defined

probability distribution.
Under this noise model, the probability of generating a given ballot A increases with

the cost of the ground-truth projects in A. The intuition here is that voters may reflect
more carefully on expensive projects and thus are more likely to make correct choices for
them. Moreover, the probability of generating A increases linearly in the “quality” of A.
How realistic this is, of course, is open to debate. On the one hand, this avoids having
to assume extremely high probabilities for correctly identifying particularly expensive
projects (in the case where the relationship would not be linear). On the other hand,
the probability of generating a ballot that is completely wrong (a ballot not including
even a single ground-truth project) is zero.

Under MNcost , maximising the likelihood would be similar to maximising the cost-
approval Nash social welfare of a budget allocation. However, for this intuitive connec-
tion to hold, it should be the case that the normalisation factor ZNcost

π? is independent
of π?. So let us look at it in more detail.

Lemma 6. For the noise model MNcost to be a well-defined probability distribution, it
must be the case that:

ZNcost
π? = 2|P|−1c(π?).

Proof. Consider an instance I = 〈P, c, b〉, an approval ballot A ⊆ P, and a ground truth
π? ∈ A(I). For MNcost to be a probability distribution, it should be the case that:∑

A⊆P
PMNcost

(A | π?, I) = 1 ⇐⇒ ZNcost
π? =

∑
A⊆P

c(|A ∩ π?|).
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Remember that there are 2|P| subsets of projects and that any project p ∈ P appears
in exactly half of them. Each time a project p ∈ π? appears in a subset A ⊆ P, its
contribution to the value of ZNcost

π? is exactly c(p). We thus have:

ZNcost
π? =

∑
A⊆P

c(|A ∩ π?|) =
∑
p∈π?

2|P|−1c(p) = 2|P|−1c(π?).

This result tells us that the normalisation factor of the noise model MNcost depends on
the ground truth, meaning that the value of the likelihood is impacted by the ground
truth one is considering when computing the MLE. In particular, we cannot conclude
that the Nash cost-approval maximising rule is the MLE for this noise model since not
all feasible budget allocations have the same cost.

Are there specific cases for which the normalisation factor is independent of the ground
truth? Yes, namely for unit-cost instances, as then all exhaustive allocations have the
same cost.

Proposition 7. Under the assumption that the ground truth is exhaustive, both FNapp
and FNcost are the MLE of the noise model MNcost for unit-cost instances.

Proof. Let I be a unit-cost instance I. Consider any two exhaustive budget allocations
π, π′ ∈ AEX (I). Since we have |π| = |π′| = c(π) = c(π′), Lemma 6 entails that ZNcost

π =
ZNcost
π′ . For any profile A, we have then:

argmax
π∈AEX (I)

LMNcost
(A, π, I) = argmax

π∈AEX (I)

∏
A∈A

c(A ∩ π)

ZNcost
π

= argmax
π∈AEX (I)

∏
A∈A

c(A ∩ π)

= FNcost(I,A).

The last line follows form the fact that FNcost is exhaustive.
Given that FNapp and FNcost coincide on unit-cost instances, this also applies to FNapp .

The fact that FNapp and FNcost are MLEs forMNcost only under some restricted hypothesis
is the first hint of a general impossibility result. Indeed, we can show that there are no
noise models for which these rule are MLEs.

Theorem 8. There is no noise model M such that either FNapp or FNcost is the MLE of
M, not even on unit-cost instances.

Proof. Consider an instance I with two projects p1 and p2 of cost 1, and a budget limit
of b = 2. Let M be a generic noise model, and denote by PπA the value of PM(A | π, I)
for any A and π. To simplify notation, we omit braces around sets.
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For the noise modelM to be a well-defined probability distribution, the following two
equalities should be satisfied:∑

A⊆P
Pp1A = 1 ⇔ P p1

∅ + P p1
p1 + P p1

p2 + P p1
p1,p2 = 1, (1)

∑
A⊆P

Pp1,p2A = 1 ⇔ P p1,p2
∅ + P p1,p2

p1 + P p1,p2
p2 + P p1,p2

p1,p2 = 1. (2)

Now, on the single-agent profile A = (∅), FNapp returns A(I). So for FNapp to be the MLE

of M, we must have P p1
∅ = P p1,p2

∅ . Moreover, on A = ({p1}), we have FNapp(I,A) =
{{p1}, {p1, p2}}, so P p1

p1 = P p1,p2
p1 . Using these two equalities and by subtracting (2)

from (1), we get:

(P p1
p2 − P p1,p2

p2 ) + (P p1
p1,p2 − P p1,p2

p1,p2 ) = 0. (3)

Now, since FNapp(I, ({p2})) = {{p2}, {p1, p2}}, we must have P p1,p2
p2 > P p1

p2 . For A =

({p1, p2}), we have FNapp(I,A) = {{p1, p2}}. We can then derive P p1,p2
p1,p2 > P p1

p1,p2 . These

two last inequalities contradict (3). It is then impossible for FNapp to be the MLE of M
on I. From the unit-cost assumption, it is clear that this also applies to FNcost .

This impossibility result concludes this part of our analysis. We will now consider
“normalised” satisfaction functions.

4.1.2 Normalised Satisfaction

In the hope of overcoming Theorem 8, we also consider normalised variants of the car-
dinality and cost satisfaction functions. In these variants, the satisfaction of an agent
is expressed in terms of the proportion of the outcome that satisfies them. The rules
induced by these normalised satisfaction functions are denoted by F̃Napp and F̃Ncost , and
they are the argmax rules defined in terms of the following functions:

f̃Napp(I,A, π) =

{∑
A∈A log(|A ∩ π|)− log(|π|) if for all A′ ∈ A, |A′ ∩ π| 6= 0,

0 otherwise.

f̃Ncost(I,A, π) =

{∑
A∈A log(c(A ∩ π))− log(c(π)) if for all A′ ∈ A, c(A′ ∩ π) 6= 0,

0 otherwise.
.

These rules are inspired by the concept of relative satisfaction introduced by Lackner,
Maly and Rey (2021). However, while in the cited work the authors normalised the
satisfaction with respect to the ballot, we define it here with respect to the budget
allocation.

It is worth noting that the rules F̃Napp and F̃Ncost can lead to extreme behaviours. For
example, consider an instance with budget limit b, that we assume to be even, and a set
of projects P = {p?}∪{p1, . . . , pb} of arbitrary cost lower than b. Consider the two-agent
profile A such that:

A1 = {p?} ∪ {p1, p3, . . . , pb−1} A2 = {p?} ∪ {p2, p4, . . . , pb}.

13



Then, according to both rules, selecting just p? is better than anything else. Even if
this can seem extreme, these rules can still be justified when considering voters who
would rather save public money than use it on projects they do not approve. This would
correspond to associating a strong rejection, rather than indifference, with the action of
not approving a project.

Note that this example also implies that the rules are not exhaustive, even on unit-cost
instances.

Let us first investigate the rule F̃Ncost . We will continue using the noise model MNcost

introduced earlier.
Recall the expression we found for the normalisation factor ZNcost

π? in Lemma 6. Plug-
ging it into the definition ofMNcost , we obtain the following expression for any instance
I, approval ballot A, and ground truth π?:

PMNcost
(A | π?, I) =

1

2|P|−1
c(A ∩ π?)
c(π?)

.

From this, it should be clear that F̃Ncost is the MLE of MNcost .

Theorem 9. The rule F̃Ncost is the MLE of the noise model MNcost .

Proof. Let I = 〈P, c, b〉 be an instance. The likelihood of a profile A and a budget
allocation π ∈ A(I) under the noise model MNcost is:

LMNcost
(A, π, I) =

∏
A∈A

1

2|P|−1
c(A ∩ π)

c(π)
=

(
1

2|P|−1

)|A| ∏
A∈A

c(A ∩ π)

c(π)
.

Since the first multiplicative factor in the above expression is constant over all budget
allocations, we have:

argmax
π∈A(I)

LMNcost
(A, π, I) = argmax

π∈A(I)

∏
A∈A

c(A ∩ π)

c(π)
= F̃Ncost(I,A).

Thus, maximising the likelihood under MNcost is the same as maximising the social
welfare in the sense of F̃Ncost .

We have finally been able to find a PB rule that can be interpreted as an MLE. In the
following we will show a similar result for F̃Napp . For this rule we introduce a new noise
model denoted by MNapp . It is such that for any instance I, approval ballot A, and
ground truth π?, we have:

PMNapp
(A | π?, I) =

1

ZNapp
π?

|A ∩ π?|,

where ZNapp
π? is a suitable normalisation factor.

Using a similar proof technique as above, we show that F̃Napp is the MLE of MNapp .

Theorem 10. The rule F̃Napp is the MLE of the noise model MNapp.
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Proof. Let us first compute the exact value of the normalisation factor ZNapp
π? . For the

noise modelMNapp to be a well-defined probability distribution, the following must hold:∑
A⊆P

PMNapp
(A | π?, I) = 1 ⇔ ZNapp

π? =
∑
A⊆P
|A ∩ π?| ⇔ ZNapp

π? = 2|P|−1|π?|.

Hence, given a profile A, we have:

argmax
π∈A(I)

LMNapp
(A, π) = argmax

π∈A(I)

∏
A∈A

1

2|P|−1
|A ∩ π|
|π|

= argmax
π∈A(I)

∏
A∈A

|A ∩ π|
|π|

= F̃Napp(I,A).

This immediately implies that F̃Napp is the MLE of MNapp .

This concludes our study of the Nash social welfare. We now turn to the more standard
measure of the social welfare, the utilitarian social welfare.

4.2 Utilitarian Social Welfare

Let us now turn to the analysis of monotonic argmax rules defined in terms of utilitarian
social welfare. As we did before, we will consider different satisfaction functions.

4.2.1 Cardinality and Cost Satisfaction

Following Talmon and Faliszewski (2019), we define the approval maximising rule Fapp

and the cost-approval maximising rule Fcost as the argmax rules determined by fapp and
fcost , respectively:

fapp(I,A, π) =
∑
A∈A
|A ∩ π|,

fcost(I,A, π) =
∑
A∈A

c(A ∩ π).

It should be clear that these two rules are monotonic argmax rule (since the score they
use is additive) and thus both satisfy weak reinforcement. Note also that these two rules
are exhaustive.

Following an idea developed by Conitzer and Sandholm (2005) for scoring rules (in
the standard voting framework), we introduce the noise model Mapp . It is defined such
that for any instance I = 〈P, c, b〉, approval ballot A ⊆ P, and ground truth π? ∈ A(I):

PMapp (A | π?, I) =
1

Zapp
π?

∏
p∈P

21p∈A∩π? =
1

Zapp
π?

2|A∩π
?|,

where Zapp
π? is a suitable normalisation factor.
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Mapp is a particularly simple manifestation of what we would expect to see in a
noise model: any possible ballot might be generated in principle, but the probability of
generating ballot A increases exponentially with the size of the intersection between A
and the ground truth.

With this noise model, maximising the likelihood may appear to have the same effect
as maximising the approval score of a budget allocation. It could then be the case that
the approval maximising rule is the MLE of Mapp . However, for this to hold, one has
to have a closer look at the normalisation factor.

Lemma 11. For the noise model Mapp to be a well-defined probability distribution, it
must be the case that:

Zapp
π? = 2|P|

(
3

2

)|π?|
.

Proof. Consider any instance I = 〈P, c, b〉. Let A ⊆ P be an approval ballot and
π? ∈ A(I) a ground truth. For Mapp to be a probability distribution, it should be the
case that: ∑

A⊆P
PMapp (A | π?, I) = 1 ⇐⇒ Zapp

π? =
∑
A⊆P

2|A∩π
?|.

Let’s do some combinatorics. For k ∈ {0, . . . , |π?|}, how many subsets of P will intersect
with π? on exactly k projects? A suitable subset will consist of k projects from π?

that make up the intersection and any number j ∈ {0, . . . , |P| − |π?|} of projects from
P \ π? that do not have any impact on the intersection. Each such subset of projects
contributes 2k to the value of Zapp

π? . We thus have:

Zapp
π? =

|π?|∑
k=0

2k
|P|−|π?|∑
j=0

(
|π?|
k

)(
|P| − |π?|

j

)

=

|π?|∑
k=0

(
|π?|
k

)
2k
|P|−|π?|∑
j=0

(
|P| − |π?|

j

)

= 2|P|−|π
?|
|π?|∑
k=0

(
|π?|
k

)
2k

= 2|P|
(

3

2

)|π?|
,

where the last two lines are derived from the binomial expansion.

The normalisation factor ofMapp thus depends on the ground truth, since not all feasible
budget allocations have the same cardinality. We thus cannot conclude that the approval
maximising rule is the MLE of this noise model.

Interestingly, this is not the case on unit-cost instances when considering exhaustive
budget allocations.
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Proposition 12. Under the assumption that the ground truth is exhaustive, both Fapp

and Fcost are the MLE of the noise model Mapp for unit-cost instances.

Proof. Let I be a unit-cost instance. For any two exhaustive budget allocations π and
π′ ∈ AEX (I), by virtue of Lemma 11, we have Zapp

π = Zapp
π′ . So, for any profile A, we

have:

argmax
π∈AEX (I)

LMapp (A, π, I) = argmax
π∈AEX (I)

∏
A∈A

1

Zapp
π

2|A∩π|

= argmax
π∈AEX (I)

2
∑
A∈A |A∩π|

= argmax
π∈AEX (I)

∑
A∈A
|A ∩ π|

= Fapp(I,A).

The last line follows from the fact that Fapp is exhaustive.
Fapp thus coincides with the MLE on I for the noise model Mapp . Moreover, since

Fapp and Fcost coincide on unit-cost instances, the result also applies to Fcost .

But this result is only half satisfactory. Can we find an impossibility result similar to
the one we had for FNapp and FNcost? It is actually easy to see that the proof we gave for
Theorem 8 also works for both Fapp and Fcost .

Theorem 13. There is no noise model M such that either Fapp or Fcost is the MLE of
M, not even on unit-cost instances.

Proof. Consider the instance I used in the proof of Theorem 8. We claim that for all
profiles that are relevant for the proof, Fapp and FNapp coincide. We list them below.

Fapp(I, ({p1})) = {{p1}, {p1, p2}} = FNapp(I, ({p1})).
Fapp(I, ({p2})) = {{p2}, {p1, p2}} = FNapp(I, ({p2})).
Fapp(I, ({p1, p2})) = {{p1, p2}} = FNapp(I, ({p1, p2})).

Fapp(I, (∅)) = A(I) = FNapp(I, (∅)).

Given that on unit-cost instances Fapp and Fcost coincide, this also applies to Fcost .

It is interesting to note that the same result applies if one maximises the total relative
satisfaction as introduced by Lackner, Maly and Rey (2021), i.e., the sum over all agents
of the number (or cost) of approved and selected projects divided by the number (or
cost) of approved projects. Indeed, one can easily check that for all relevant profiles this
maximisation rule coincides with FNapp . This trivially also applies when using the Nash
social welfare with relative satisfaction.

As an aside, observe that the greedy cost approval rule Fgreed discussed in Section 2.2
coincides with Fapp on unit-cost instances. Thus, both Proposition 12 and Theorem 13
apply to Fgreed as well, and we can refine Proposition 2 as follows.
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Corollary 14. Under the assumption that the ground truth is exhaustive, the greedy
cost approval rule Fgreed is the MLE for Mapp for unit-cost instances.

Moreover, for unconstrained ground truths, there is no noise modelM such that Fgreed

is the MLE for M, not even on unit-cost instances.

These insights apply also for any refinements of these rules, such as the leximax rule
introduced by Rey, Endriss and de Haan (2020).

4.2.2 Normalised Satisfaction

Let us conclude our formal analysis by briefly mentioning the utilitarian social welfare
with the normalised satisfaction functions. For the same reasons as for F̃Napp and F̃Ncost ,
the corresponding utilitarian rules are not exhaustive. Analysing the epistemic status
of these rules however turns out to be rather intricate, even on unit-cost instances.
Indeed, it is less clear what a suitable noise model might look like, especially due to
the complications related to the potential normalisation factor. Exploring these rules
remains an interesting open problem.

5 Conclusion

We have initiated the study of PB through the truth-tracking lens. For a total of eleven
rules, we investigated whether they can be interpreted as MLEs. For those that cannot,
we tried to identify specific conditions under which they still can serve as MLEs. All
our results are summarised in Table 1.

There is still some work to be done regarding the study of MLEs in the context of
PB. The most obvious task would be to answer the open questions corresponding to the
two missing cells in Table 1. In the case of our positive results, one could try to come
up with more natural noise models for which the rules are MLEs, e.g., noise models
for which not all the supersets of the ground truth have the same probability. Our
work also shows a certain tension between efficiency requirements (exhaustiveness) and
truth-tracking ability: the two rules that we proved to be MLEs (for the general case)
both fail exhaustiveness. This interaction deserves further study. Similarly, we found
that the most studied rules that enforce proportional representation fail to satisfy weak
reinforcement. It would be interesting to investigate whether or not this constitutes a
formal incompatibility.

Then, on top of the MLE concept, the epistemic approach also offers several other
ways of studying voting rules. As we have seen, finding rules that are MLEs is not an
easy task. It might be the case that this is simply too demanding a requirement. Instead,
other criteria that have been studied in the literature on epistemic social choice could
be applied to the PB setting as well. For instance, it could be interesting to study PB
rules with respect to their sample complexity (Caragiannis, Procaccia and Shah, 2016)
or their robustness against noise (Caragiannis, Kaklamanis, Karanikolas and Krimpas,
2022)—a criterion that is somewhat similar to the MLE requirement but easier to satisfy.
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Greedy Approval-max Cost-approval-max
Sequential MESµ Cost Standard Normalised Standard Normalised
Phragmén (for all µ) Approval

∑ ∏ ∑ ∏ ∑ ∏ ∑ ∏
Unit-costEX 7 – 3 3 3 – – 3 3 – –
Unit-cost 7 7 7 7 7 ? 3 7 7 ? 3

General case 7 7 7 7 7 ? 3 7 7 ? 3

Table 1: Summary of results: The sum Σ and product Π symbols represent the utilitarian and
the Nash variant of a welfare-based rule. A check-mark 3 indicates that there exists
a noise model for which the rule is an MLE and a cross-mark 7 the fact that it is
impossible to find such a noise model. The EX subscript signifies that we make the
additional assumption that the ground truth is exhaustive. This assumption would not
be meaningful for non-exhaustive rules; this is indicated by a bar –. Remember that
Sequential Phragmén is exhaustive on unit-cost instances. Question marks ? indicate
open problems.

All of these constitute interesting directions for future work on a topic that is still very
much under-studied and deserving of further attention.
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