
Parameterized Complexity Theory and its
Applications to Social Choice

Simon Rey and Ronald de Haan

June Project

Institute for Logic, Language and Computation
University of Amsterdam

Simon Rey Social Choice and Parameterized Complexity Theory 1 / 33

Us and You

Simon Rey Social Choice and Parameterized Complexity Theory 2 / 33

The project

Four lectures:
1 Today until 15:00: Social choice, standard complexity and fixed parameter tractability
2 Tuesday 11:00-13:00: Treewidth and parameterized complexity on tree-like structures
3 Thursday 9:00-11:00: Hardness theory for parameterized complexity
4 Friday 13:00-15:00: Lower bounds on kernelization

Assessment in two steps:
Technical presentations during the second week
Final outcome: a short paper on a topic of your choice

All the details are on the website: http://simonrey.fr/en/teaching/PCT2021.

Simon Rey Social Choice and Parameterized Complexity Theory 3 / 33

http://simonrey.fr/en/teaching/PCT2021

Recap of the Deadlines

All the things you should not forget to do:
Thursday June 3, before 19:00: preferences
for the presentations;
Tuesday June 15, before 19:00: topic for the
paper;
Tuesday June 15, before 19:00: time slot the
paper meeting;
Friday June 25, before 19:00: final paper.

Simon Rey Social Choice and Parameterized Complexity Theory 4 / 33

Useful References for the Project

Simon Rey Social Choice and Parameterized Complexity Theory 5 / 33

1. Introduction

Introduction

(Computational) Social Choice

Social Choice Theory

Social choice theory studies problems in which the outcome is to be determined by
taking into account the preferences several agents expressed over the admissible

outcomes.

It can also be seen as the study of how to aggregate a set of information into a single
outcome.

Social choice theory includes:
Voting theory
Judgment aggregation
Fair division
Coalition formation
. . .

Simon Rey Social Choice and Parameterized Complexity Theory 6 / 33

First Example: Voting

????????

??

Simon Rey Social Choice and Parameterized Complexity Theory 7 / 33

Voting Theory: The Model

The mathematical model we study consists in:
A set of candidates: individuals, parties, projects...
A set of admissible outcomes: single candidates, sets of candidates, sets of projects
satisfying the budget constraint...
A set of agents: citizens, residents...
Preferences expressed by the agents : rankings over the candidates, subsets of the
candidates...

The goal is to select one or several admissible outcomes given the preferences submitted by
the agents.

We define and study voting rules, i.e., mappings taking as input an election and the
preferences of the voters and returning one or several admissible outcomes.

Simon Rey Social Choice and Parameterized Complexity Theory 8 / 33

Second Example: Fair Division

7 3 7 3 3 7

3 3 7 7 3 3

3 3 7 7 3 3

7 3 7 7 3 3

3 3 3 3 3 7

7 3 3 3 3 7

3 3 3 3 3 7

Simon Rey Social Choice and Parameterized Complexity Theory 9 / 33

Second Example: Fair Division

Simon Rey Social Choice and Parameterized Complexity Theory 10 / 33

Fair Division: The Model

The mathematical model we study consists in:
A set of items: objects, tasks, chores...
A set of agents: citizens, employees, friends...
Preferences expressed by the agents : rankings over the items, valuations of the items...

The goal is to fairly assign the items to the agents by taking into consideration the prefer-
ences they submitted.

We define and study allocation rules, i.e., mappings taking as input an allocation
instance and the preferences of the agents and returning one or several item allocations.

Simon Rey Social Choice and Parameterized Complexity Theory 11 / 33

From Social Choice to Computational Social Choice

The shift from social choice to computational social choice is made by exploring the com-
putational problems arising in the study of social choice.

How hard is it to compute the winner of an election for a specific voting rule?
How hard is it to find an allocation satisfying a given fairness criteria?

These questions can all be answered using complexity theory.

Simon Rey Social Choice and Parameterized Complexity Theory 12 / 33

Introduction

Complexity Theory

Complexity Theory

Complexity theory studies how hard it is to solve a problem.

What do we mean by “solve”?
We use an abstract model of computation—Turing machine—that gives a precise

mathematical definition of what an algorithm is. Solving a problem then means defining
a program for this abstract machine which answers the question.
How do we measure the “hardness” of solving a problem?

Different measures have been considered but the one we will use consists on
counting number of elementary steps needed to run a program solving the problem on
a Turing machine.

Simon Rey Social Choice and Parameterized Complexity Theory 13 / 33

Turing Machines

Definition: Turing Machine
A Turing machine is a tuple 〈Γ,Q, δ〉, where:

Γ is the alphabet, i.e., the set of symbols
used by the machine. It includes 0, 1, �
(blank symbol) and B (start symbol).
Q is a finite set of states, i.e., the set of
states the machine can be in at anytime. It
includes qstart and qhalt.
δ : Q× Γk → Q× Γk−1 × {L,R,S}k is the
transition function indicating for each state
and each symbol read on its k tapes the next
configuration of the machine (state, sym-
bols to write and movements of the heads).

Simon Rey Social Choice and Parameterized Complexity Theory 14 / 33

Execution of a Turing Machine

https://turingmachinesimulator.com

Simon Rey Social Choice and Parameterized Complexity Theory 15 / 33

https://turingmachinesimulator.com

Decision Problems and Languages

We focus on decision problems for which the answer is either Yes or No. They are represented
as languages L ⊆ Σ∗ such that the answer for x ∈ Σ∗ is yes if and only x ∈ L.

We will say that a Turing machine M decides a language L if for every input x ∈ Σ∗, M

halts on an accepting state on x if and only if x ∈ L.

Example: The language of all the binary palindromes defined as:

Lpal = {x ∈ {0, 1}∗ | x is a palindrome}

is decided by the Turing machine M described on the previous slide. The decision
problem given x ∈ {0, 1}∗, is x a palindrome is thus decided by M.

Simon Rey Social Choice and Parameterized Complexity Theory 16 / 33

Complexity Classes

The running time of a Turing machine M is defined as the number of steps it requires to
reach an halting state. M runs in time g : N → N if on every input x ∈ Σn of length n,
M halts after at most g(n) steps.

We usually study asymptotic running times using the big-O notation. For two functions
f , g : N → N, we say that f is O(g) if there exists c ∈ N and an n0 ∈ N such that
f(n) ≤ c× g(n) for all n ≥ n0. In words, f is O(g) if g asymptotically upper-bounds f .

We can then classify languages based on the asymptotic running time required to decide
them. For instance, P the class of all languages decidable in polynomial time.

Definition: Complexity Class P

P is the class of all the languages L ⊆ Σ∗ for which there exists a Turing machine M

and a constant c ∈N such that:
M decides L;
M runs in time O(|x|c) on every input x ∈ Σ∗.

Simon Rey Social Choice and Parameterized Complexity Theory 17 / 33

Problems in P

Is Envy-Free

Instance: A set of items I, a set of agents N = {1, . . . ,n}, n utility functions
ui : I →N, and a allocation π : N → 2I such that all items are
allocated and there is no overlap between any two agents.

Question: Is the allocation π envy-free, i.e., ∀i, j ∈ N ,
∑
o∈π(i)

ui(o) ≤
∑

o∈π(j)
ui(o)?

Is Majority-Winner

Instance: A set of candidates C, a set of agents N = {1, . . . ,n}, n ballots
bi ∈ C, and a candidate c?

Question: Is c? the majority winner of the election, i.e.,
∑
i∈N

1bi=c? ≥ n/2?

Simon Rey Social Choice and Parameterized Complexity Theory 18 / 33

Problems believed to be Harder than P

Is Pareto-Optimal

Instance: A set of items I, a set of n agents N , n utility functions ui : I →N, and an
allocation π : N → 2I such that all items are allocated and no item is
allocated to several agents (a partition of the items)

Question: Is the allocation π Pareto-optimal, i.e., there is no other allocation π′ such
that all agents are better off in π′ and at least one agent is strictly better off?

Max-Approval Participatory Budgeting

Instance: A set of projects P, a cost function c : P →N, a budget limit B ∈N, a set of
agents N = {1, . . . ,n}, n approval ballots Ai ⊆ P and a parameter k ∈N

Question: Is there a budget allocation π ⊆ P with ∑p∈π c(p) ≤ B and such that∑
i∈N
|π ∩Ai| ≥ k?

Simon Rey Social Choice and Parameterized Complexity Theory 19 / 33

What to do with Hard Problems?

We have presented two problems that are believed not to be solvable in polynomial time (Is
Pareto-optimal is in coNP and Max-Approval Participatory Budgeting is in NP).
Can we still hope to solve them reasonably well in a reasonable amount of time?

Several direction can be followed to cope with intractability:
Developing advanced algorithmic techniques to compute exact solutions
Searching for solutions approximating the exact solution
Devising randomized algorithms hoping they find the solution

All these approaches would benefit from a more fine-grained analysis of where exactly the
complexity is coming from.

This is the key idea behind parameterized complexity.

Simon Rey Social Choice and Parameterized Complexity Theory 20 / 33

2. Parameterized Complexity

Parameterized Computational Problems

Parameterized problems are languages L ⊆ Σ∗×N of pairs 〈x, k〉 where x ∈ Σ∗ is the main
input and k ∈N the parameter (the parameter can equivalently be defined as¨ κ : Σ∗ →N).
Using only natural numbers as parameters can be seen as a restriction but it is not: Every
complex structures can be represented as integers, even lists of parameters.

A parameterized version of Max-Approval Participatory Budgeting could be:

Max-Approval Participatory Budgeting

Instance: A set of projects P, a cost function c : P →N, a budget limit B ∈N,
a set of agents N = {1, . . . ,n}, n approval ballots Ai ⊆ P and k ∈N

Parameter: k
Question: Is there π ⊆ P with ∑p∈π c(p) ≤ B and such that

∑
i∈N
|π ∩Ai| ≥ k?

For every problem, several interesting parameters can be defined: One could parame-
terize the problem above by the budget limit B, or the highest cost maxp∈P c(p).

Simon Rey Social Choice and Parameterized Complexity Theory 21 / 33

What to do with the Parameters?

Once we have defined a parameterized problem, we want to analyze its complexity with
respect to the parameter . For example, given an instance x and a parameter k of the
problem, can we solve it in time O(2k×|x|)? In time O(|x|k)? Or better, in O(2k|x|O(1))?

As in the standard complexity theory, we can also define parameterized complexity classes
and study where the problems belong based on their different parameterizations.

Simon Rey Social Choice and Parameterized Complexity Theory 22 / 33

A First Example: the Bar Fight Prevention Problem

Simon Rey Social Choice and Parameterized Complexity Theory 23 / 33

A First Example: the Bar Fight Prevention Problem

Bar Fight Prevention

Instance: A set of n regular customers N , a who-fights-who graph G = 〈N ,E〉 and k ∈N

Parameter: k
Question: Can we reject k people from the bar to avoid any fights?

How would you solve that? In what running time (based on k and |N |)?

Simon Rey Social Choice and Parameterized Complexity Theory 24 / 33

A Clever Algorithm?

Recursive procedure for graph G = 〈V ,E〉,
parameter k and current solution S:

If ∃(u, v) ∈ E with {u, v} ∩ S = ∅:
If k > 0:

Branch on G, k− 1 and S ∪ {u}
Branch on G, k− 1 and S ∪ {v}

Otherwise output “no”
Otherwise output S

What is the running time? O(2k|E|)!

This shows that the Bar Fight
Preventing problem is solvable in

FPT time!

Simon Rey Social Choice and Parameterized Complexity Theory 25 / 33

3. Fixed Parameter Tractability

Fixed Parameter Tractability

The previous algorithm has a running time which is polynomial in the input size when the
parameter is fixed. All parameterized problems admitting such an algorithm are said to be
fixed parameter tractable and belong to the complexity class FPT.

Definition: Parameterized Complexity Class FPT

A parameterized problem L is in FPT if and only if there exists a Turing machine M,
a constant c ∈N and a computable function f such that, for all pairs 〈x, k〉 ∈ L:

M runs in time f(k)|x|c on 〈x, k〉;
〈x, k〉 ∈ L if and only if M(〈x, k〉) = 1.

Can you give me some trivial FPT problems? Or some parameters for which (almost)
everything is FPT?

Let’s now see some techniques to solve problems in FPT time (with interesting parameters)!

Simon Rey Social Choice and Parameterized Complexity Theory 26 / 33

Fixed Parameter Tractability

Bounded Search Tree

Bounded Search Tree

The algorithm we designed to solve the Bar Fight Prevention problem is based on the
technique of bounded search tree. The general procedure is described below.

Definition: Bounded Search Tree
Consider an instance x of a minimization problem, at each step of the process, con-
struct `(x) ∈N simpler instances of x called x1, . . . ,x`(x) such that:

Every solution of xi corresponds to a solution of x and among all the solutions
of x1 to x`(x), one of them corresponds to an optimum solution of x;
The number `(x) is small, e.g., bounded by a function of the parameter;
For all simpler instance xi, the value of the parameter is significantly smaller (a
constant smaller for instance) than in the original instance.

In the Bar Fight Prevention problem, we had a straightforward correspondence between
a solution for the input and the solutions of the simpler instances; `(x) = 2 for all instances
and the value of the parameter was decrease by 1 at each step: Alles goed!

Simon Rey Social Choice and Parameterized Complexity Theory 27 / 33

Fixed Parameter Tractability

Kernelization

Kernelization

What if we could reduce the size of the instance before solving it? That’s kernelization!

Definition: Kernel of a Problem
A data reduction rule ϕ : Σ∗×N→ Σ∗×N for a parameterized problem L ⊆ Σ∗×N

is a function computable in time polynomial, mapping an instance 〈x, k〉 ∈ L to an
equivalent instance 〈x′, k′〉, i.e., such that:

〈x, k〉 ∈ L⇐⇒
〈
x′, k′

〉
∈ L.

A kernel of parameterized problem L is a polynomial Turing machine M that applies
a set of data reduction rules on an instance such that:

Given an instance 〈x, k〉 ∈ L, M outputs an equivalent instance 〈x′, k′〉 ∈ L;
There exists a computable function g : N→N depending only on k such that:

sup
{
|x′|+ k′ |

〈
x′, k′

〉
= M(〈x, k〉),x ∈ Σ∗

}
≤ g(k).

Simon Rey Social Choice and Parameterized Complexity Theory 28 / 33

Kernelization for Efficient and Envy-Free Allocation

Additive Efficient and Envy-Free Allocation

Instance: A set of items I, a set of n agents N , n utility functions ui : I →N

Parameter: |I| the number of items
Question: Is there an allocation π (a partition of the items to the agents) that is

1. Pareto-optimal: no one can be made better off with no harm
2. envy-free: ∀i, j ∈ N ,

∑
o∈π(i)

ui(o) ≤
∑

o∈π(j)
ui(o)?

Consider the following algorithm:
If |N | ≥ |I|: return a trivial no instance
Otherwise return the original instance.

Is this a kernelization? Why?

Simon Rey Social Choice and Parameterized Complexity Theory 29 / 33

Kernelization and FPT

Proposition:
A parameterized language L ⊆ Σ∗ ×N is in FPT iff it is decidable and has a kernel.

(Kernel ⇒ FPT) Let us describe an FPT Turing machine on 〈x, k〉: run the kernel (in poly-
nomial time) to obtain 〈x′, k′〉 of size at most g(k). Solve 〈x′, k′〉 (since L is decidable) in
time depending on the size of x′ which only depends on k.

(FPT ⇒ Kernel) Suppose we have an FPT Turing machine M running in time f(k)× |x|c.
We describe a kernel for L. On input 〈x, k〉, run M for at most |x|c+1 steps. If it terminates
return a trivial yes or no instance based on the output. Otherwise, return 〈x, k〉. In this
case, f(k)× |x|c > |x|c+1, that is, f(k) > |x| that leads to a kernel of size f(k) + k (which
is computable). �

Simon Rey Social Choice and Parameterized Complexity Theory 30 / 33

Fixed Parameter Tractability

Integer Linear Programming

Integer Linear Programming is FPT

Integer Linear Programming (ILP) is a very general framework for solving (optimization)
problems. It can be described as follows:

Integer Linear Programming Feasibility

Instance: A matrix A ∈ Rm,n with m rows and n columns and a vector b ∈ Rm

Question: Is there a vector x ∈ Rn such that Ax ≤ b?

Interestingly, the problem is in FPT when parameterized by the number of variables.

Proposition:
An instance x of the problem Integer Linear Programming Feasibility with
n variables can be solved in time O(n2.5n+o(n) × |p|).

That is a useful technique to provide FPT algorithms!

Simon Rey Social Choice and Parameterized Complexity Theory 31 / 33

ILP Formalization for EEF Allocation

Binary Efficient and Envy-Free Allocation

Instance: A set of items I, a set of n agents N , n utility functions ui : I → {0, 1}
Parameter: n the number of agents
Question: Is there a Pareto-optimal and envy-free allocation π?

For an item o ∈ I, let fo = (ui(o))i∈N be its fingerprint. Let F = {fo | o ∈ I}. We describe
an allocation through the number xfi of items of fingerprint f allocated to agent i ∈ N .

xfi = 0 ∀f ∈ F and i ∈ N s.t. f [i] = 0
n∑
i=1

xfi = |{o ∈ I | fo = f}| ∀f ∈ F∑
f∈F

xfi × f [i] ≥
∑
f∈F

xfj × f [i] ∀i, j ∈ N , i 6= j

xfi ≥ 0 ∀f ∈ F , ∀i ∈N

Since |F | ≤ 2n, the number of variable in the program is at most n2n. Binary Efficient
and Envy-Free Allocation is thus in FPT when parameterized by n.

Simon Rey Social Choice and Parameterized Complexity Theory 32 / 33

4. Conclusion

Summary and What’s Next
Today, we have:

Introduced the theory of (computational) social choice;
Gave a brief overview of complexity theory;
Presented the idea at the core of parameterized complexity theory;
Seen several techniques to develop fixed-parameter tractable algorithms.

Tomorrow, we’ll study other positive algorithmic results, focusing on graphs. Stay tuned!

Simon Rey Social Choice and Parameterized Complexity Theory 33 / 33

	Introduction
	(Computational) Social Choice
	Complexity Theory

	Parameterized Complexity
	Fixed Parameter Tractability
	Bounded Search Tree
	Kernelization
	Integer Linear Programming

	Conclusion

