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From Tractability to Intractability

During the first two lectures, we studied the class FPT that contains all the fixed-parameter
tractable problems. These problems are tractable—solvable in polynomial time—when the
value of the parameter is fixed. In that sense, FPT can be thought as an equivalent of P in
classical complexity theory.

Today, we will study problems that are fixed-parameter intractable, that is, problems for
which no FPT algorithm can be devised. We will see complexity classes that can be seen as
equivalent of the class NP in classical complexity theory. And some other classes.

Before going further into parameterized complexity, let’s start with a remainder about
intractability in classical complexity theory.
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1. A Detour to Classical Complexity Theory



The Class NP

Definition: Complexity Class NP

NP is the class of all the languages L ⊆ Σ∗ for which there exists a Turing machine
M (the verifier), a polynomial p : N→N, and a constant c ∈N such that:

For all x ∈ Σ∗, we have:

x ∈ L if and only if ∃u ∈ {0, 1}p(|x|) (the certificate) such that M(x,u) = 1;

M runs in time O(|x|c) on every input x ∈ Σ∗.

While P was the class of all the problems decidable in polynomial time, NP is the class of
all the problems for which we can verify a (potential) solution in polynomial time.
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Non-Deterministic Turing Machines

Definition: Non-Deterministic Turing Machines
A non-deterministic Turing machine M is a of a Turing machine such that:

It has two transition functions δ1 and δ2 (instead of only one);
At each step, the one to be used is chosen non-deterministically;
M accepts an input if there exists a sequence of non-deterministic choices that
lead to an accepting state.

NP can be equivalently defined through non-deterministic Turing machines.

Proposition: Another Characterization of NP

NP is the class of all the languages L ⊆ Σ∗ for which there exists a non-deterministic
Turing machine M running in polynomial time and deciding L.
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The Class coNP

Definition: Complexity Class coNP

coNP is the class of all the languages L ⊆ Σ∗ for which there exists a Turing machine
M (the verifier), a polynomial p : N→N, and a constant c ∈N such that:

For all x ∈ Σ∗, we have:

x ∈ L if and only if ∀u ∈ {0, 1}p(|x|) (the certificate), M(x,u) = 1;

M runs in time O(|x|c) on every input x ∈ Σ∗.

coNP can also be seen as the class of all the problems for which checking whether something
is not a solution is an NP problem.

Proposition: Complexity Class coNP

A language L ⊆ Σ∗ is in coNP if and only if L = {x ∈ Σ∗ | x /∈ L} is in NP.
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Some Examples

Is Pareto-Optimal

Instance: A set of items I, a set of n agents N , n utility functions ui : I →N, and an
allocation π : N → 2I such that all items are allocated and no item is
allocated to several agents (a partition of the items)

Question: Is the allocation π Pareto-optimal, i.e., there is no other allocation π′ such
that all agents are better off in π′ and at least one agent is strictly better off?

Max-Approval Participatory Budgeting

Instance: A set of projects P, a cost function c : P →N, a budget limit B ∈N, a set of
agents N = {1, . . . ,n}, n approval ballots Ai ⊆ P and a parameter k ∈N

Question: Is there a budget allocation π ⊆ P with
∑
p∈π c(p) ≤ B and such that∑

i∈N
|π ∩Ai| ≥ k?

Who is where?
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NP-completeness

The hardness theory in classical complexity theory is based on the idea that several problems
are equivalent in terms of how hard they are to solve. The formalization of this idea is based
on polynomial time reductions.

A language L1 ⊆ Σ∗ is polynomial time reducible to another language L2 ⊆ Σ∗ if there
exists a polynomial time computable function f : Σ∗ → Σ∗ (the reduction) such that for all
x ∈ Σ∗, we have: x ∈ L1 ⇐⇒ f(x) ∈ L2.

Definition: NP-completeness
A language L ⊆ Σ∗ is NP-hard if every L′ in NP is polynomial time reducible to L.
A language L ⊆ Σ∗ is NP-complete if it NP-hard and it is in NP.

To show that a language L is NP-hard we start from a language L0 in NP (Max-Approval
Participatory Budgeting for instance, or, historically, SAT) and provide a polynomial
time reduction showing how to embed L0 in L so that if one can decide L, one would also
decide L0. In that sense, all NP-complete languages are equally hard to solve: solving one
implies solving all of them (since reductions are transitive).
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2. Fixed-Parameter Tractable Reduction



Fixed-Parameter Tractable Reduction

Definition: FPT-Reduction
An FPT-reduction from a parameterized language L1 ⊆ Σ∗×N and to another L2 ⊆
Γ∗ ×N is a mapping f : Σ∗ ×N→ Γ∗ ×N such that:

1 〈x, k〉 ∈ L1 if and only if f(x, k) ∈ L2;
2 k′ ≤ g(k) for some computable function g for k′ such that 〈x′, k′〉 = f(x, k);
3 f is computable by an FPT algorithm (with respect to k).

Condition 2 ensures that the class FPT is closed under FPT-reduction.

Proposition: Two Facts About FPT-Reduction
The relation between languages derived from FPT-reductions is transitive.

If there is an FPT-reduction from a parameterized language L1 ⊆ Σ∗ ×N to another
parameterized language L2 ∈ Γ∗ ×N that is in FPT, then L1 is in FPT.
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A Parameterized Equivalent of NP?

FPT can be interpreted as the parameterized counterpart of P (recall that for a language
L in P, all of its parameterizations are in FPT). Now that we have a suitable notion of
parameterized reduction, can we can try to define an equivalent of NP in parameterized
complexity theory.

We will see there is not a single class that resemble NP in parameterized complexity
theory but rather a whole hierarchy of them. Let’s begin!
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3. Parameterized NP?



Parameterized NP?

First Attempt: paraNP



Non-Deterministic Parameterized Classes
To move from P to NP, we plugged in non-deterministic Turing machines. Let’s do the same
with FPT, we obtain the class paraNP.

Definition: Parameterized Complexity Class paraNP

paraNP is the class of all the parameterized languages L ⊆ Σ∗ ×N for which there
exists a non-deterministic Turing machine M, a constant c ∈ N and a computable
function f such that, for all pairs 〈x, k〉 ∈ L:

M runs in time f(k)|x|c on 〈x, k〉;
〈x, k〉 ∈ L if and only if M(〈x, k〉) = 1.

It is clear that for all languages L in NP, all the parameterized languages L′ ⊆ L×N are
in paraNP. In that sense paraNP is an equivalent to NP. Similarities are even stronger:

Proposition:
FPT = paraNP if and only P = NP.
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paraNP-Complete Parameterized Languages

Before giving the main result about paraNP, we need two more things:
The fact that paraNP is closed under FPT-reductions;
The k-slice of a parameterized language L ⊆ Σ∗ ×N defined as:

Lk = {x ∈ Σ∗ | 〈x, k〉 ∈ L}.

Now the main result:

Theorem:
Let L ⊆ Σ∗ ×N be a non-trivial parameterized language in paraNP. The following
statements are equivalent:

L is paraNP-complete under FPT-reduction;
There exist ` ∈N>0 and k1, . . . , k` ∈N such that Lk1 ∪ . . .∪Lk`

is NP-complete
(under polynomial time reductions).

Simon Rey Hardness Theory of Parameterized Complexity 11 / 27



paraNP-Complete Parameterized Languages

Before giving the main result about paraNP, we need two more things:
The fact that paraNP is closed under FPT-reductions;
The k-slice of a parameterized language L ⊆ Σ∗ ×N defined as:

Lk = {x ∈ Σ∗ | 〈x, k〉 ∈ L}.

Now the main result:

Theorem:
Let L ⊆ Σ∗ ×N be a non-trivial parameterized language in paraNP. The following
statements are equivalent:

L is paraNP-complete under FPT-reduction;
There exist ` ∈N>0 and k1, . . . , k` ∈N such that Lk1 ∪ . . .∪Lk`

is NP-complete
(under polynomial time reductions).

Simon Rey Hardness Theory of Parameterized Complexity 11 / 27



Implications and Interpretations

Corollary:
A non-trivial parameterized language in paraNP with at least one NP-complete slice
is paraNP-complete under FPT-reduction.

This, unfortunately, implies that paraNP-complete problems are not super interesting
from a parameterized point of view since their hardness is already present for finitely many
values of the parameters.

Let’s try to find a better counterpart for NP in the parameterized world!
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Parameterized NP?

Another try: the W Hierarchy



Boolean Circuit

Definition: Boolean Circuit
A boolean circuit is a directed acyclic graph whose nodes are labeled either with a
Boolean constant (> or ⊥), a propositional variable or a Boolean operator (∧, ∨, ¬).
There is also a specified output node with outdegree 0.

output ∧

¬

∨

∧

∧

¬

x1

x2

x3

> >

>

>

⊥

⊥

>

⊥

>

⊥
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Properties of Boolean Circuits

We will need the following definitions about boolean circuits.
A formula is a Boolean circuit in which all gates have outdegree at most 1.
The depth of a Boolean circuit is the length of a longest path from a variable node to
the output node.
The weft of a Boolean circuit is the largest number of large gates (with indegree at
least 3) on any path from a variable node to the output node.

output ∧

¬

∨

∧

∧

¬

x1

x2

x3

Is the previous Boolean circuit a formula? What is its depth? And its weft?
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Other Properties of Boolean Circuits

We will also need the following classes of Boolean circuits.

The class of all Boolean circuits of depth u and weft t: CIRC t,u.
The class of all Boolean circuits: CIRC .
The class of all Boolean formulas: FORM .

Finally, an assignment maps each variable to a truth value (⊥ or >). A assignment satisfies
the Boolean circuit C if after propagating the truth values, the output node is set to >. An
assignment has weight k if it sets exactly k variables to >.
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A Family of Classes: W[t]

The family of classes W[t] is defined with respect to the following parameterized language.

WSat(C)

Instance: A Boolean circuit C ∈ C and k ∈N

Parameter: k
Question: Does there exists an assignment of weight k that satisfies C?

Definition: Parameterized Complexity Class W[t]

The parameterized complexity class W[t], for t ∈N>0 ∪ {SAT , P}, is defined as:

W[t] = [{WSat(CIRC t,u) | u ≥ 1}]FPT,
W[SAT ] = [WSat(FORM )]FPT,

W[P] = [WSat(CIRC )]FPT,

where [S ]FPT is the transitive closure of S ⊆ 2Σ∗×N under FPT-reductions.
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Restricted Non-Determinism and W[P]

W[P] can be alternatively characterized with non-deterministic Turing machines that have
only limited access to non-determinism.

A non-deterministic Turing machine M is k-restricted if there are two functions f , g : N→
N and a constant c ∈N such that on every input 〈x, k〉 ∈ Σ∗ ×N, the machine M runs in
at most f(k)|x|c steps of which at most g(k) log(|x|) are non-deterministic.

Proposition:
W[P] is the class of all the parameterized languages L ⊆ Σ∗ ×N that can be decided
by a non-deterministic k-restricted Turing machine M.
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Current Taxonomy of Parameterized Complexity Classes

FPT W[1] W[2] · · · W[SAT ] W[P] paraNP

Proposition:
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT ] ⊆ W[P] ⊆ paraNP.
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Towards Intractability

FPT W[1] W[2] · · · W[SAT ] W[P] paraNP

All the inclusions in the figure above are believed to be strict. However, it seems really hard
to show this. In particular, for any t ∈N∪ {SAT , P} if FPT 6= W[t], then also P 6= NP (since
P = NP if and only FPT = paraNP). Whether the converse also holds is an open problem.

Let’s now look at a class of parameterized languages that we can prove is strictly larger
than FPT (diagonalization is a great tool!).
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4. Provable Fixed-Parameter Intractability



Non-Uniform XP

Let’s come back to the idea of having polynomial slices that we mentioned in paraNP.

Definition: Parameterized Complexity Class XPnu
XPnu is the class of all the parameterized languages L ⊆ Σ∗ ×N whose slices Lk for
k ∈N>0 are all in P.

This class is non-uniform in the sense that it contains undecidable problems.

Proof: Consider an undecidable language Q ⊆ 1∗ and its parameterized version
Qpara = {〈x, k〉 | x ∈ Q, k = max{1, |x|}}. The k-slide of Qpara is then Qparak = {x ∈
Q | |x| = k}. That is, Qparak = ∅ if 1k /∈ Q and Qparak = {1k} otherwise. This is
trivially decidable in polynomial time. Qpara is thus in XPnu.

This is not so nice, let’s get rid of the non-uniformity!
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(Uniform) XP

Definition: Parameterized Complexity Class XP

XP is the class of all the parameterized languages L ⊆ Σ∗ ×N for which there exists
a computable function f : N→N and a Turing machine M such that:

M runs in time |x|f (k) + f(k) on 〈x, k〉;
〈x, k〉 ∈ L if and only if M(〈x, k〉) = 1.

Sometimes the running time is only required to be |x|f (k), it is roughly equivalent but
less precise (for when |x| = 1).

Once again, it is easy to see that XP is close under FPT-reductions.

While we have seen parameterized classes that resembles NP, XP plays the role of EXP in
parameterized complexity theory. In the following, we will show that XP is a strict superset
of FPT, mimicking the fact that P ( EXP.
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An XP-Complete Language

We first show that the following parameterized language is XP-complete under FPT-reductions.

Exp-DTM-Halt

Instance: A Turing machine M, n ∈N in unary and k ∈N

Parameter: k
Question: Does M accept the empty string ε in at most nk steps?

To show XP-completeness, we will first show that the language Exp-DTM-Halt is in XP
by presenting an algorithm solving it in time |x|f (k) + f(k). In a second time, we will show
that the language is XP-hard by presenting an FPT-reduction from an arbitrary problem in
XP to Exp-DTM-Halt.

Proof: An algorithm witnessing membership in XP simply simulates M on ε for
nk steps and output the result of the simulation. This is possible since an efficient
universal Turing machine exists.
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An XP-Complete Language - End of the proof

Exp-DTM-Halt

Instance: A Turing machine M, n ∈N in unary and k ∈N

Parameter: k
Question: Does M accept the empty string ε in at most nk steps?

Proof: Let’s show XP-hardness now. Take any parameterized language L ⊆ Σ∗×N

in XP. Let f : N→ N be a computable function and M a Turing machine deciding
if 〈x, k〉 ∈ L in time |x|f (k) + f(k).
Consider another Turing machine M′ which first writes 〈x, k〉 on its input tape and
then simulates M on 〈x, k〉.
Assume without loss of generality that for some computable g : N → N, M′ needs
at most (|x|+ 2)g(k) steps on input 〈x, k〉.
The function that maps any 〈x, k〉 ∈ L to an instance 〈M′(〈x, k〉), |x|+ 2, g(k)〉 of
Exp-DTM-Halt is an FPT-reduction from L to Exp-DTM-Halt.
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Provable Fixed-Parameter Intractability

The previous result is particularly interesting for us as it allows to show that FPT is a strict
subset of XP. This entails that XP-hard languages cannot be solved in FPT time.

Theorem:
FPT ( XP.

Proof: Obviously FPT ⊆ XP. Assume now that Exp-DTM-Halt is in FPT.
Then, for some c ∈N all the slices of Exp-DTM-Halt are solvable in DTIME[nc].
In particular, the (c+ 1)-slice also is. It implies that DTIME[nc+1] ⊆ DTIME[nc] which
contradicts the time hierarchy theorem (see below).

The time hierarchy theorem states that for two time-constructible functions f , g : N→N,
if f(n) log(f(n)) is o(g(n)), then DTIME[f(n)] ( DTIME[g(n)]. Roughly speaking, this says
that we can solve strictly more problems when allowing extra running time.
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Final Taxonomy of What we Have Seen

FPT W[1] W[2] · · · W[SAT ] W[P] paraNPXP

Proposition:
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT ] ⊆ W[P] ⊆ paraNP∩ XP.
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5. Conclusion



Want More?
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Summary

Today, we have:

Recalled the idea behind NP;
Tried to define parameterized counterparts of NP first via paraNP and then through the
W-hierarchy;
Explored the class XP and proved that it contains fixed-parameter intractable problems.

In the last lecture of the week, Ronald will tell you about some more advanced techniques
about lower bounds for kernelization.
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